山东省平原县2021-2022学年中考数学全真模拟试题含解析
展开
这是一份山东省平原县2021-2022学年中考数学全真模拟试题含解析,共19页。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.若x>y,则下列式子错误的是( )
A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.
2.一个数和它的倒数相等,则这个数是( )
A.1 B.0 C.±1 D.±1和0
3.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
4.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
5.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )
A.149×106千米2 B.14.9×107千米2
C.1.49×108千米2 D.0.149×109千2
6.已知3a﹣2b=1,则代数式5﹣6a+4b的值是( )
A.4 B.3 C.﹣1 D.﹣3
7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
8.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
9.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )
A. B.1 C. D.
10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.
12.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.
13.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m___n(填>、<或=)
14.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率为________.
15.若y=,则x+y= .
16.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是 。
三、解答题(共8题,共72分)
17.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
18.(8分)问题提出
(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形 ABCD 的面积为 _;
问题探究
(2).如图 2,在四边形 ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得△BEF 的周长最小,作出图像即可.
19.(8分)一次函数的图象经过点和点,求一次函数的解析式.
20.(8分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.
21.(8分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
22.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别
频数(人数)
频率
小说
0.5
戏剧
4
散文
10
0.25
其他
6
合计
1
根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
23.(12分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
求证:①PN=PF;②DF+DN=DP;
(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.
24.如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值是多少cm.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
A、不等式两边都减3,不等号的方向不变,正确;
B、乘以一个负数,不等号的方向改变,错误;
C、不等式两边都加3,不等号的方向不变,正确;
D、不等式两边都除以一个正数,不等号的方向不变,正确.
故选B.
2、C
【解析】
根据倒数的定义即可求解.
【详解】
的倒数等于它本身,故符合题意.
故选:.
【点睛】
主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
3、B
【解析】
试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
∴.∴.故选B.
4、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
5、C
【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
解:149 000 000=1.49×2千米1.
故选C.
把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.
6、B
【解析】
先变形,再整体代入,即可求出答案.
【详解】
∵3a﹣2b=1,
∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
故选:B.
【点睛】
本题考查了求代数式的值,能够整体代入是解此题的关键.
7、B
【解析】
解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
根据作图过程可知:PB=CP,
∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
∵∠ABC=90°,∴PD∥AB.
∴E为AC的中点,∴EC=EA,∵EB=EC.
∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
∴正确的有①②④.
故选B.
考点:线段垂直平分线的性质.
8、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
9、B
【解析】
连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.
【详解】
如图,连接BC,
由网格可得AB=BC=,AC=,即AB2+BC2=AC2,
∴△ABC为等腰直角三角形,
∴∠BAC=45°,
则tan∠BAC=1,
故选B.
【点睛】
本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.
10、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、π.
【解析】
由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.
【详解】
:∵△ABC为等边三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴当AE=CF时,点P的路径是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
点P的路径是l=,
故答案为.
【点睛】
本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.
12、8﹣π
【解析】
分析:
如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.
详解:
如下图,过点D作DH⊥AE于点H,
∴∠DHE=∠AOB=90°,
∵OA=3,OB=2,
∴AB=,
由旋转的性质结合已知条件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠DEH,
∴△DEH≌△BAO,
∴DH=BO=2,
∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF
=
=.
故答案为:.
点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.
13、>
【解析】
根据一次函数的性质,k
相关试卷
这是一份山东省济宁地区2021-2022学年中考数学全真模拟试题含解析,共17页。试卷主要包含了计算的结果是,下列运算结果正确的是等内容,欢迎下载使用。
这是一份山东省德州临邑县联考2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,-10-4的结果是,的算术平方根为,如果,那么代数式的值是,五名女生的体重等内容,欢迎下载使用。
这是一份山东省滨州市名校2021-2022学年中考数学全真模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,已知x=2﹣,则代数式,若2<<3,则a的值可以是等内容,欢迎下载使用。