终身会员
搜索
    上传资料 赚现金
    山东省青岛黄岛区七校联考2021-2022学年中考五模数学试题含解析
    立即下载
    加入资料篮
    山东省青岛黄岛区七校联考2021-2022学年中考五模数学试题含解析01
    山东省青岛黄岛区七校联考2021-2022学年中考五模数学试题含解析02
    山东省青岛黄岛区七校联考2021-2022学年中考五模数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛黄岛区七校联考2021-2022学年中考五模数学试题含解析

    展开
    这是一份山东省青岛黄岛区七校联考2021-2022学年中考五模数学试题含解析,共23页。试卷主要包含了已知电流I,一元二次方程的根的情况是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
    A. B. C. D.
    2.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()

    A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
    3.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    4.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
    A. B. C. D.
    5.下列四个几何体中,主视图与左视图相同的几何体有(  )

    A.1个 B.2个 C.3个 D.4个
    6.在3,0,-2,- 四个数中,最小的数是( )
    A.3 B.0 C.-2 D.-
    7.一元二次方程的根的情况是( )
    A.有一个实数根 B.有两个相等的实数根
    C.有两个不相等的实数根 D.没有实数根
    8.已知实数a<0,则下列事件中是必然事件的是(  )
    A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0
    9.矩形具有而平行四边形不具有的性质是(  )
    A.对角相等 B.对角线互相平分
    C.对角线相等 D.对边相等
    10.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

    A.60海里 B.45海里 C.20海里 D.30海里
    11.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=(  )

    A.90°-α B.90°+ α C. D.360°-α
    12.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(  )

    A.48 B.60
    C.76 D.80
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.8的立方根为_______.
    14.点(1,–2)关于坐标原点 O 的对称点坐标是_____.
    15.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.

    16.长城的总长大约为6700000m,将数6700000用科学记数法表示为______
    17.不等式组的解集是 _____________.
    18.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
    ①MN=BM+DN
    ②△CMN的周长等于正方形ABCD的边长的两倍;
    ③EF1=BE1+DF1;
    ④点A到MN的距离等于正方形的边长
    ⑤△AEN、△AFM都为等腰直角三角形.
    ⑥S△AMN=1S△AEF
    ⑦S正方形ABCD:S△AMN=1AB:MN
    ⑧设AB=a,MN=b,则≥1﹣1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.
    20.(6分)观察下列各个等式的规律:
    第一个等式:=1,第二个等式: =2,第三个等式:=3…
    请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
    21.(6分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
    (1)观察猜想
    图1中,线段PM与PN的数量关系是   ,位置关系是   ;
    (2)探究证明
    把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

    22.(8分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(≈1.732,结果精确到0.1米)

    23.(8分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.
    (1)求∠A的度数.
    (2)求图中阴影部分的面积.

    24.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
    25.(10分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.

    请根据图中的信息,回答下列问题:
    (1)这次抽样调查中共调查了  人;
    (2)请补全条形统计图;
    (3)扇形统计图中18﹣23岁部分的圆心角的度数是  ;
    (4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数
    26.(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.
    求一次函数的解析式和反比例函数的解析式;
    求的面积;
    根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.

    27.(12分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
    从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:根据题意得△=32﹣4m>0,
    解得m<.
    故选B.
    考点:根的判别式.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    2、B
    【解析】
    ∵观察可知:左边三角形的数字规律为:1,2,…,n,
    右边三角形的数字规律为:2,,…,,
    下边三角形的数字规律为:1+2,,…,,
    ∴最后一个三角形中y与n之间的关系式是y=2n+n.
    故选B.
    【点睛】
    考点:规律型:数字的变化类.
    3、A
    【解析】
    分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
    【详解】

    由①,得x≥2,
    由②,得x<1,
    所以不等式组的解集是:2≤x<1.
    不等式组的解集在数轴上表示为:

    故选A.
    【点睛】
    本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    4、C
    【解析】
    根据反比例函数的图像性质进行判断.
    【详解】
    解:∵,电压为定值,
    ∴I关于R的函数是反比例函数,且图象在第一象限,
    故选C.
    【点睛】
    本题考查反比例函数的图像,掌握图像性质是解题关键.
    5、D
    【解析】
    解:①正方体的主视图与左视图都是正方形;
    ②球的主视图与左视图都是圆;
    ③圆锥主视图与左视图都是三角形;
    ④圆柱的主视图和左视图都是长方形;
    故选D.
    6、C
    【解析】
    根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
    【详解】
    因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,
    所以,
    所以最小的数是,
    故选C.
    【点睛】
    此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.
    7、D
    【解析】
    试题分析:△=22-4×4=-12<0,故没有实数根;
    故选D.
    考点:根的判别式.
    8、B
    【解析】
    A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;
    C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;
    故选B.
    点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    9、C
    【解析】
    试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
    解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
    平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
    ∴矩形具有而平行四边形不一定具有的性质是对角线相等,
    故选C.
    10、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    【点睛】
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
    11、C
    【解析】
    试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
    ∵PB和PC分别为∠ABC、∠BCD的平分线,
    ∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
    则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
    故选C.
    考点:1.多边形内角与外角2.三角形内角和定理.
    12、C
    【解析】
    试题解析:∵∠AEB=90°,AE=6,BE=8,
    ∴AB=
    ∴S阴影部分=S正方形ABCD-SRt△ABE=102-
    =100-24
    =76.
    故选C.
    考点:勾股定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2.
    【解析】
    根据立方根的定义可得8的立方根为2.
    【点睛】
    本题考查了立方根.
    14、(-1,2)
    【解析】
    根据两个点关于原点对称时,它们的坐标符号相反可得答案.
    【详解】
    A(1,-2)关于原点O的对称点的坐标是(-1,2),
    故答案为:(-1,2).
    【点睛】
    此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
    15、
    【解析】
    解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
    当x=0时,y=3,∴点B的坐标为(0,3);
    当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
    ∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
    ∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
    故答案为.

    16、6.7×106
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:6700000用科学记数法表示应记为6.7×106,故选6.7×106.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1≤|a|<10,n为整数;表示时关键要正确确定a的值以及n的值.
    17、x<-1
    【解析】

    解不等式①得:x<5,
    解不等式②得:x<-1
    所以不等式组的解集是x<-1.
    故答案是:x<-1.
    18、①②③④⑤⑥⑦.
    【解析】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
    【详解】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
    则∠DAH=∠BAM,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵∠MAN=45°,
    ∴∠BAN+∠DAN=45°,
    ∴∠NAH=45°,
    在△MAN和△HAN中,

    ∴△MAN≌△HAN,
    ∴MN=NH=BM+DN,①正确;
    ∵BM+DN≥1,(当且仅当BM=DN时,取等号)
    ∴BM=DN时,MN最小,
    ∴BM=b,
    ∵DH=BM=b,
    ∴DH=DN,
    ∵AD⊥HN,
    ∴∠DAH=∠HAN=11.5°,
    在DA上取一点G,使DG=DH=b,
    ∴∠DGH=45°,HG=DH=b,
    ∵∠DGH=45°,∠DAH=11.5°,
    ∴∠AHG=∠HAD,
    ∴AG=HG=b,
    ∴AB=AD=AG+DG=b+b=b=a,
    ∴,
    ∴,
    当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
    即:,
    ∴≤≤1,⑧错误;
    ∵MN=NH=BM+DN
    ∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
    ∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
    ∵△MAN≌△HAN,
    ∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;

    如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
    ∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
    ∴∠EAH=∠EAF=45°,
    ∵EA=EA,AH=AD,
    ∴△EAH≌△EAF,
    ∴EF=HE,
    ∵∠ABH=∠ADF=45°=∠ABD,
    ∴∠HBE=90°,
    在Rt△BHE中,HE1=BH1+BE1,
    ∵BH=DF,EF=HE,
    ∵EF1=BE1+DF1,③结论正确;
    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,∠BDC=∠ADB=45°,
    ∵∠MAN=45°,
    ∴∠EAN=∠EDN,
    ∴A、E、N、D四点共圆,
    ∴∠ADN+∠AEN=180°,
    ∴∠AEN=90°
    ∴△AEN是等腰直角三角形,
    同理△AFM是等腰直角三角形;⑤结论正确;
    ∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
    ∴AM=AF,AN=AE,
    如图3,过点M作MP⊥AN于P,
    在Rt△APM中,∠MAN=45°,
    ∴MP=AMsin45°,
    ∵S△AMN=AN•MP=AM•AN•sin45°,
    S△AEF=AE•AF•sin45°,
    ∴S△AMN:S△AEF=1,
    ∴S△AMN=1S△AEF,⑥正确;
    ∵点A到MN的距离等于正方形ABCD的边长,
    ∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
    即:正确的有①②③④⑤⑥⑦,
    故答案为①②③④⑤⑥⑦.
    【点睛】
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2).
    【解析】
    试题分析:(1)根据概率公式即可得到结论;
    (2)画出树状图即可得到结论.
    试题解析:(1)选择 A通道通过的概率=,
    故答案为;
    (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.

    20、(1)=4;(2)=n.
    【解析】
    试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;
    (2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.
    试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;
    (2)第n个等式是:=n.证明如下:
    ∵= = =n
    ∴第n个等式是:=n.
    点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
    21、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
    (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
    (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
    方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
    【详解】
    解:(1)∵点P,N是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∵PN∥BD,
    ∴∠DPN=∠ADC,
    ∵PM∥CE,
    ∴∠DPM=∠DCA,
    ∵∠BAC=90°,
    ∴∠ADC+∠ACD=90°,
    ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
    ∴PM⊥PN,
    故答案为:PM=PN,PM⊥PN,
    (2)由旋转知,∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,BD=CE,
    同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    同(1)的方法得,PM∥CE,
    ∴∠DPM=∠DCE,
    同(1)的方法得,PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
    =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
    =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
    ∴MN最大时,△PMN的面积最大,
    ∴DE∥BC且DE在顶点A上面,
    ∴MN最大=AM+AN,
    连接AM,AN,
    在△ADE中,AD=AE=4,∠DAE=90°,
    ∴AM=2,
    在Rt△ABC中,AB=AC=10,AN=5,
    ∴MN最大=2+5=7,
    ∴S△PMN最大=PM2=×MN2=×(7)2=.
    方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
    ∴PM最大时,△PMN面积最大,
    ∴点D在BA的延长线上,
    ∴BD=AB+AD=14,
    ∴PM=7,
    ∴S△PMN最大=PM2=×72=

    【点睛】
    本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
    22、楼高AB为54.6米.
    【解析】
    过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.
    【详解】
    解:
    如图,过点C作CE⊥AB于E,

    则AE=CD=20,
    ∵CE====20,
    BE=CEtanα=20×tan45°=20×1=20,
    ∴AB=AE+EB=20+20≈20×2.732≈54.6(米),
    答:楼高AB为54.6米.
    【点睛】
    此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.
    23、 (1) ∠A=30°;(2)
    【解析】
    (1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
    再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
    (2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.
    【详解】
    解:(1)连结OC
    ∵CD为⊙O的切线
    ∴OC⊥CD
    ∴∠OCD=90°
    又∵OA=OC
    ∴∠A=∠ACO
    又∵∠A=∠D
    ∴∠A=∠ACO=∠D
    而∠A+∠ACD+∠D=180°﹣90°=90°
    ∴∠A=30°

    (2)由(1)知:∠D=∠A=30°
    ∴∠COD=60°
    又∵CD=2
    ∴OC=2
    ∴S阴影=.
    【点睛】
    本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.
    24、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积
    25、 (1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万
    【解析】
    试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;
    (2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;
    (3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;
    (4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数.
    试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人.
    故答案为1500 ;
    (2)1500-450-420-330=300人.
    补全的条形统计图如图:

    (3)18-23岁这一组所对应的圆心角的度数为360×=108°.
    故答案为108° ;
    (4)(300+450)÷1500=50%,.
    考点:条形统计图;扇形统计图.
    26、(1),;(2)8;(3)或.
    【解析】
    试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;
    (2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;
    (3)根据函数的图象和交点坐标即可求解.
    试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.
    ∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).
    ∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.
    故直线AB的解析式为.
    ∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;
    (2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;
    (3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.

    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    27、 (1);(2).
    【解析】
    (1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
    【详解】
    (1) 从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,
    ∴P(牌面是偶数)==;
    故答案为:;
    (2)根据题意,画树状图:

    可知,共有种等可能的结果,其中恰好是的倍数的共有种,

    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析: 这是一份山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了已知,在中,,,下列结论中,正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。

    山东省青岛市黄岛区重点达标名校2021-2022学年中考二模数学试题含解析: 这是一份山东省青岛市黄岛区重点达标名校2021-2022学年中考二模数学试题含解析,共23页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    山东省青岛市黄岛区弘文校2021-2022学年中考押题数学预测卷含解析: 这是一份山东省青岛市黄岛区弘文校2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了在平面直角坐标系中,点,一次函数的图象不经过,已知m=,n=,则代数式的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map