终身会员
搜索
    上传资料 赚现金
    山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析
    立即下载
    加入资料篮
    山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析01
    山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析02
    山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析

    展开
    这是一份山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,函数中,x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

    A. B. C. D.
    2.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是(  )

    A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
    3.计算的结果是(       )
    A. B. C. D.2
    4.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是(  )
    A.a>b B.a<b
    C.a=b D.与m的值有关
    5.函数中,x的取值范围是(  )
    A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
    6.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).

    A. B. C. D.
    7.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是(  )
    A.3,-1 B.1,-3 C.-3,1 D.-1,3
    8.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )
    A.3 B.6 C.9 D.36
    9.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
    A.3或6 B.1或6 C.1或3 D.4或6
    10.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
    12.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.

    13.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.

    14.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.
    15.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为( )

    A.40° B.50° C.60° D.20°
    16.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.
    17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.
    (1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是   ,推断的数学依据是   .
    (2)如图②,在△ABC中,∠B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距.
    (3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.

    19.(5分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    20.(8分)先化简,再求值:
    ÷(a﹣),其中a=3tan30°+1,b=cos45°.
    21.(10分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
    (1)求证:PA是⊙O的切线;
    (2)若PD=,求⊙O的直径;
    (3)在(2)的条件下,若点B等分半圆CD,求DE的长.

    22.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
    (1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
    (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
    (3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

    23.(12分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    24.(14分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
    【详解】
    解:连接BD,BE,BO,EO,

    ∵B,E是半圆弧的三等分点,
    ∴∠EOA=∠EOB=∠BOD=60°,
    ∴∠BAD=∠EBA=30°,
    ∴BE∥AD,
    ∵ 的长为 ,

    解得:R=4,
    ∴AB=ADcos30°= ,
    ∴BC=AB=,
    ∴AC=BC=6,
    ∴S△ABC=×BC×AC=××6=,
    ∵△BOE和△ABE同底等高,
    ∴△BOE和△ABE面积相等,
    ∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
    故选:D.
    【点睛】
    本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
    2、A
    【解析】
    根据三角形中位线定理判断即可.
    【详解】
    ∵AD为△ABC的中线,点E为AC边的中点,
    ∴DC=BC,DE=AB,
    ∵BC不一定等于AB,
    ∴DC不一定等于DE,A不一定成立;
    ∴AB=2DE,B一定成立;
    S△CDE=S△ABC,C一定成立;
    DE∥AB,D一定成立;
    故选A.
    【点睛】
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    3、C
    【解析】
    化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.
    【详解】
    原式=3﹣2·=3﹣=.
    故选C.
    【点睛】
    本题主要考查二次根式的化简以及二次根式的混合运算.
    4、A
    【解析】
    【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
    【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
    所以,y随x的增大而减小.
    因为,1<4,
    所以,a>b.
    故选A
    【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
    5、B
    【解析】
    要使有意义,
    所以x+1≥0且x+1≠0,
    解得x>-1.
    故选B.
    6、B
    【解析】
    试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
    考点:3.线段垂直平分线性质;3.轴对称作图.
    7、A
    【解析】
    根据题意可得方程组,再解方程组即可.
    【详解】
    由题意得:,
    解得:,
    故选A.
    8、C
    【解析】
    设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.
    【详解】
    设抛物线解析式为y=-(x-m)(x-m+6),
    ∵y=-[x2-2(m-3)x+(m-3)2-1]
    =-[x-(m-3)]2+1,
    ∴抛物线的顶点坐标为(m-3,1),
    ∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,
    即n=1.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    9、B
    【解析】
    分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
    详解:如图,

    当h<2时,有-(2-h)2=-1,
    解得:h1=1,h2=3(舍去);
    当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
    当h>5时,有-(5-h)2=-1,
    解得:h3=4(舍去),h4=1.
    综上所述:h的值为1或1.
    故选B.
    点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
    10、C
    【解析】
    试题解析:左视图如图所示:

    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3
    【解析】
    ∵圆锥的母线长是5cm,侧面积是15πcm2,
    ∴圆锥的侧面展开扇形的弧长为:l==6π,
    ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,
    12、120
    【解析】
    首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
    【详解】
    由题意得:∠GBA=∠GBE,
    ∵AD∥BC,
    ∴∠AGB=∠GBE=30°,
    ∴∠ABC=60°,
    ∵AB∥CD,
    ∴∠C=180°-∠ABC=120°,
    故答案为:120.
    【点睛】
    本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
    13、2﹣
    【解析】
    过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论
    【详解】
    如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,
    ∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.
    ∴S弓形AF=S扇形ADF-S△ADF=,
    ∴ S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.

    【点睛】
    本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.
    14、
    【解析】
    【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.
    【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:
    .
    故答案为
    【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.
    15、B.
    【解析】
    试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.
    考点:圆的基本性质、切线的性质.
    16、
    【解析】
    试题分析:,解得r=.
    考点:弧长的计算.
    17、∠A=∠C或∠ADC=∠ABC
    【解析】
    本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.
    【详解】
    添加条件可以是:∠A=∠C或∠ADC=∠ABC.
    ∵添加∠A=∠C根据AAS判定△AOD≌△COB,
    添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,
    故填空答案:∠A=∠C或∠ADC=∠ABC.
    【点睛】
    本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3).
    【解析】
    试题分析:(1)根据线段的垂直平分线的性质即可判断.
    (2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.
    (3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.
    解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等
    (2)解:如图②中,作AE⊥BC于E.

    在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,
    ∴AE=BE=3,
    ∵AD为BC边中线,BC=8,
    ∴BD=DC=1,
    ∴DE=BD﹣BE=1﹣3=1,
    ∴边BC的中垂距为1
    (3)解:如图③中,作CH⊥AF于H.

    ∵四边形ABCD是矩形,
    ∴∠D=∠EHC=∠ECF=90°,AD∥BF,
    ∵DE=EC,∠AED=∠CEF,
    ∴△ADE≌△FCE,
    ∴AE=EF,
    在Rt△ADE中,∵AD=1,DE=3,
    ∴AE= =5,
    ∵∠D=EHC,∠AED=∠CEH,
    ∴△ADE∽△CHE,
    ∴ = ,
    ∴ = ,
    ∴EH= ,
    ∴△ACF中边AF的中垂距为
    19、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    20、,
    【解析】
    原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值.
    解:原式=,
    当,
    原式=.
    “点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
    21、(1)证明见解析;(2);(3);
    【解析】
    (1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
    ∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
    于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
    (2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
    (3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
    DH=x,则DE=2x,所以 然后求出x即可
    得到DE的长.
    【详解】
    (1)证明:连接OA、AD,如图,
    ∵∠B=2∠P,∠B=∠ADC,
    ∴∠ADC=2∠P,
    ∵AP=AC,
    ∴∠P=∠ACP,
    ∴∠ADC=2∠ACP,
    ∵CD为直径,
    ∴∠DAC=90°,
    ∴∠ADC=60°,∠C=30°,
    ∴△ADO为等边三角形,
    ∴∠AOP=60°,
    而∠P=∠ACP=30°,
    ∴∠OAP=90°,
    ∴OA⊥PA,
    ∴PA是⊙O的切线;
    (2)解:在Rt△OAP中,∵∠P=30°,
    ∴OP=2OA,

    ∴⊙O的直径为;
    (3)解:作EH⊥AD于H,如图,
    ∵点B等分半圆CD,
    ∴∠BAC=45°,
    ∴∠DAE=45°,
    设DH=x,
    在Rt△DHE中,DE=2x,
    在Rt△AHE中,


    解得


    【点睛】
    本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    22、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
    【解析】
    【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;
    (2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,
    (3)根据勾股定理逆定理解答即可.
    【详解】(1)如图所示,△A1B1C1即为所求;

    (2)如图所示,△A2B2C2即为所求;
    (3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,
    即OB2+OA12=A1B2,
    所以三角形的形状为等腰直角三角形.
    【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    23、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.

    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    24、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .

    相关试卷

    山东省泰安市东平县实验中学达标名校2021-2022学年中考数学押题卷含解析: 这是一份山东省泰安市东平县实验中学达标名校2021-2022学年中考数学押题卷含解析,共19页。

    2022届山东省金乡市达标名校中考数学押题卷含解析: 这是一份2022届山东省金乡市达标名校中考数学押题卷含解析,共20页。试卷主要包含了下列计算正确的是,若,则x-y的正确结果是,已知抛物线c等内容,欢迎下载使用。

    2021-2022学年山东省济宁市微山县达标名校中考押题数学预测卷含解析: 这是一份2021-2022学年山东省济宁市微山县达标名校中考押题数学预测卷含解析,共19页。试卷主要包含了已知∠BAC=45,下列各数中,无理数是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map