开学活动
搜索
    上传资料 赚现金

    山东省泰安市泰山区重点达标名校2022年中考数学四模试卷含解析

    山东省泰安市泰山区重点达标名校2022年中考数学四模试卷含解析第1页
    山东省泰安市泰山区重点达标名校2022年中考数学四模试卷含解析第2页
    山东省泰安市泰山区重点达标名校2022年中考数学四模试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省泰安市泰山区重点达标名校2022年中考数学四模试卷含解析

    展开

    这是一份山东省泰安市泰山区重点达标名校2022年中考数学四模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的一元二次方程等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在中,,,,则的值是( )
    A. B. C. D.
    2.4的平方根是(  )
    A.2 B.±2 C.8 D.±8
    3.x=1是关于x的方程2x﹣a=0的解,则a的值是(  )
    A.﹣2 B.2 C.﹣1 D.1
    4.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是(  )
    A.m> B.m>且m≠2 C.﹣<m<2 D.<m<2
    5.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )

    A. B.4 C. D.
    6.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:
    月用水量(吨)
    8
    9
    10
    户数
    2
    6
    2
    则关于这10户家庭的月用水量,下列说法错误的是(  )
    A.方差是4 B.极差是2 C.平均数是9 D.众数是9
    7.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有(  )

    A.1处 B.2处 C.3处 D.4处
    8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为(  )
    A. B. C. D.
    9.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是(  )

    A. B.
    C. D.
    10.一次函数的图象上有点和点,且,下列叙述正确的是  
    A.若该函数图象交y轴于正半轴,则
    B.该函数图象必经过点
    C.无论m为何值,该函数图象一定过第四象限
    D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
    二、填空题(共7小题,每小题3分,满分21分)
    11.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是  .
    12.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.

    13.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.

    14.如图, AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.

    15.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.

    16.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.

    17.化简:_____________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.

    19.(5分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
    ①求此抛物线的解析式;
    ②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
    20.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
    (1)求抛物线的表达式及点B的坐标;
    (2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
    (3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
    21.(10分)如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.求证:DE=CE. 若∠CDE=35°,求∠A 的度数.

    22.(10分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?
    23.(12分)化简求值:,其中x是不等式组的整数解.
    24.(14分)(10分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.

    (1)求证:直线CD为⊙O的切线;
    (2)若AB=5,BC=4,求线段CD的长.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
    【详解】
    ∵∠C=90°,BC=1,AB=4,
    ∴,
    ∴,
    故选:D.
    【点睛】
    本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
    2、B
    【解析】
    依据平方根的定义求解即可.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选B.
    【点睛】
    本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
    3、B
    【解析】
    试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
    故选B.
    考点:一元一次方程的解.
    4、D
    【解析】
    根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>且m≠﹣2,再利用根与系数的关系得到, m﹣2≠0,解得<m<2,即可求出答案.
    【详解】
    解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,
    ∴m>且m≠﹣2,
    ∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,
    ∴﹣>0,m﹣2≠0,
    ∴<m<2,
    ∵m>,
    ∴<m<2,
    故选:D.
    【点睛】
    本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.
    5、B
    【解析】
    求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
    【详解】
    解:∵AD⊥BC,BE⊥AC,
    ∴∠ADB=∠AEB=∠ADC=90°,
    ∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
    ∵∠AFE=∠BFD,
    ∴∠EAF=∠FBD,
    ∵∠ADB=90°,∠ABC=45°,
    ∴∠BAD=45°=∠ABC,
    ∴AD=BD,
    在△ADC和△BDF中 ,
    ∴△ADC≌△BDF,
    ∴DF=CD=4,
    故选:B.
    【点睛】
    此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
    6、A
    【解析】
    分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= [(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.
    详解:极差:10-8=2,
    平均数:(8×2+9×6+10×2)÷10=9,
    众数为9,
    方差:S2= [(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,
    故选A.
    点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.
    7、D
    【解析】
    到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.
    【详解】
    满足条件的有:
    (1)三角形两个内角平分线的交点,共一处;
    (2)三个外角两两平分线的交点,共三处.
    如图所示,

    故选D.
    【点睛】
    本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.
    8、B
    【解析】
    由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ∵a<0,
    ∴抛物线的开口方向向下,
    故第三个选项错误;
    ∵c<0,
    ∴抛物线与y轴的交点为在y轴的负半轴上,
    故第一个选项错误;
    ∵a<0、b>0,对称轴为x=>0,
    ∴对称轴在y轴右侧,
    故第四个选项错误.
    故选B.
    9、C
    【解析】
    根据左视图是从物体的左面看得到的视图解答即可.
    【详解】
    解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的
    长方形,
    故选C.
    【点睛】
    本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.
    10、B
    【解析】
    利用一次函数的性质逐一进行判断后即可得到正确的结论.
    【详解】
    解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
    把代入得,,则该函数图象必经过点,故B正确;
    当时,,,函数图象过一二三象限,不过第四象限,故C错误;
    函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
    故选B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    依据调和数的意义,有-=-,解得x=1.
    12、6﹣π
    【解析】
    连接、,根据阴影部分的面积计算.
    【详解】
    连接、,

    ,,
    ,,
    为的直径,





    阴影部分的面积
    .
    故答案为.
    【点睛】
    本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.
    13、50°
    【解析】
    延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
    【详解】
    延长BF交CD于G
    由折叠知,
    BE=CF, ∠1=∠2, ∠7=∠8,
    ∴∠3=∠4.
    ∵∠1+∠2=∠3+∠4,
    ∴∠1=∠2=∠3=∠4,
    ∵CD∥AB,
    ∴∠3=∠5,
    ∴∠1=∠5,
    在△BCG和△DAE中
    ∵∠1=∠5,
    ∠C=∠A,
    BC=AD,
    ∴△BCG≌△DAE,
    ∴∠7=∠6=25°,
    ∴∠8=∠7=25°,
    ∴FDA=50°.
    故答案为50°.

    【点睛】
    本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
    14、18
    【解析】
    连接OB,
    ∵OA=OB,∴∠B=∠A=30°,
    ∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,
    ∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,
    ∴∠BOC=∠B,∴CB=OC=6,
    ∴AB=AC+BC=18,
    故答案为18.

    15、120
    【解析】
    首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
    【详解】
    由题意得:∠GBA=∠GBE,
    ∵AD∥BC,
    ∴∠AGB=∠GBE=30°,
    ∴∠ABC=60°,
    ∵AB∥CD,
    ∴∠C=180°-∠ABC=120°,
    故答案为:120.
    【点睛】
    本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
    16、x+x=75.
    【解析】
    试题解析:设长方形墙砖的长为x厘米,
    可得:x+x=75.
    17、
    【解析】
    根据分式的运算法则即可求解.
    【详解】
    原式=.
    故答案为:.
    【点睛】
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.

    三、解答题(共7小题,满分69分)
    18、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
    【解析】
    (1)只需运用待定系数法就可求出二次函数的解析式;
    (1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
    (3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
    【详解】
    (1)把A(1,0),B(8,6)代入,得

    解得:
    ∴二次函数的解析式为;
    (1)由,得
    二次函数图象的顶点坐标为(4,﹣1).
    令y=0,得,
    解得:x1=1,x1=6,
    ∴D点的坐标为(6,0);
    (3)二次函数的对称轴上存在一点C,使得的周长最小.
    连接CA,如图,
    ∵点C在二次函数的对称轴x=4上,
    ∴xC=4,CA=CD,
    ∴的周长=CD+CB+BD=CA+CB+BD,
    根据“两点之间,线段最短”,可得
    当点A、C、B三点共线时,CA+CB最小,
    此时,由于BD是定值,因此的周长最小.
    设直线AB的解析式为y=mx+n,
    把A(1,0)、B(8,6)代入y=mx+n,得

    解得:
    ∴直线AB的解析式为y=x﹣1.
    当x=4时,y=4﹣1=1,
    ∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.

    【点睛】
    本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
    19、(1)①;②n≤1;(2)ac≤1,见解析.
    【解析】
    (1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
    ②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
    (2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
    【详解】
    解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
    △=(b+1)2=1,b=﹣1,
    平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
    ∴4a﹣2b=1,
    ∴a=﹣,b=﹣1,
    原抛物线:y=﹣x2+x,
    ②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
    ∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
    由得:x2+2n=1有解,所以n≤1.
    (2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
    其解析式为:y=ax2﹣bx+c过点(c,1),
    ∴ac2﹣bc+c=1 (c>1),
    ∴ac﹣b+1=1,b=ac+1,
    且当x=1时,y=c,
    对称轴:x=,抛物线开口向上,画草图如右所示.
    由题知,当1<x<c时,y>1.
    ∴≥c,b≥2ac,
    ∴ac+1≥2ac,ac≤1;

    【点睛】
    本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
    20、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
    (2)y的取值范围是﹣3≤y<1.
    (2)b的取值范围是﹣<b<.
    【解析】
    (1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
    【详解】
    (1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
    令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
    (2)y=-2x-2=-3.
    ∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
    ∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
    (2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
    当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
    由函数图象可知;b的取值范围是:-2<b<.
    【点睛】
    本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
    21、 (1)见解析;(2) 40°.
    【解析】
    (1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;
    (2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.
    【详解】
    (1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.
    ∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.
    (2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.
    ∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.
    【点睛】
    本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.
    22、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.
    【解析】
    (1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
    【详解】
    解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,
    依题意,得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x+20=1.
    答:文学书的单价为40元/本,科普书的单价为1元/本.
    (2)设购进m本科普书,
    依题意,得:40×1+1m≤5000,
    解得:m≤.
    ∵m为整数,
    ∴m的最大值为2.
    答:购进1本文学书后最多还能购进2本科普书.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    23、当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.
    【解析】
    先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.
    【详解】
    原式=÷
    =•
    =,
    解不等式组,
    解不等式①,得:x>﹣4,
    解不等式②,得:x≤﹣1,
    ∴不等式组的解集为﹣4<x≤﹣1,
    ∴不等式的整数解是﹣3,﹣2,﹣1.
    又∵x+1≠0,x﹣1≠0∴x≠±1,
    ∴x=﹣3或x=﹣2,
    当x=﹣3时,原式=﹣,
    当x=﹣2时,原式=﹣1.
    【点睛】
    本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.
    24、(1)证明见试题解析;(2).
    【解析】
    试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;
    (2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.
    试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;
    (2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.

    考点:切线的判定.

    相关试卷

    2024年山东省泰安市泰山区中考数学一模试卷(含解析):

    这是一份2024年山东省泰安市泰山区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,小器一容三斛;大器一,解答题等内容,欢迎下载使用。

    2023年山东省泰安市泰山区东岳中学中考数学三模试卷(含解析):

    这是一份2023年山东省泰安市泰山区东岳中学中考数学三模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省泰安市泰山区中考数学一模试卷(含解析):

    这是一份2023年山东省泰安市泰山区中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map