终身会员
搜索
    上传资料 赚现金
    山东省潍坊市寿光2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    山东省潍坊市寿光2022年中考数学考前最后一卷含解析01
    山东省潍坊市寿光2022年中考数学考前最后一卷含解析02
    山东省潍坊市寿光2022年中考数学考前最后一卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省潍坊市寿光2022年中考数学考前最后一卷含解析

    展开
    这是一份山东省潍坊市寿光2022年中考数学考前最后一卷含解析,共24页。试卷主要包含了计算的结果是,下列运算正确的是,下列方程中,没有实数根的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是(  )
    年龄(岁)
    12
    13
    14
    15
    16
    人数
    1
    2
    2
    5
    2
    A.2,14岁 B.2,15岁 C.19岁,20岁 D.15岁,15岁
    2.估计的运算结果应在哪个两个连续自然数之间(  )
    A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
    3.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
    A.方程有两个相等的实数根
    B.方程有两个不相等的实数根
    C.没有实数根
    D.无法确定
    4.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )
    A.
    B.
    C.
    D.
    5.计算的结果是(  )
    A.1 B.﹣1 C.1﹣x D.
    6.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    7.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )

    A. B.
    C. D.
    8.下列运算正确的是(  )
    A.x2•x3=x6 B.x2+x2=2x4
    C.(﹣2x)2=4x2 D.( a+b)2=a2+b2
    9.已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是( )
    A.b2 -4c +1=0 B.b2 -4c -1=0 C.b2 -4c +4 =0 D.b2 -4c -4=0
    10.下列方程中,没有实数根的是( )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.

    12.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.

    13.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.

    14.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.

    15.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.

    16.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
    三、解答题(共8题,共72分)
    17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)

    18.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

    请根据以上信息,回答下列问题:
    (l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);
    (2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.
    (3)请估计全校共征集作品的件数.
    (4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
    19.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
    (1)求证:此方程有两个不相等的实数根;
    (2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
    20.(8分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?
    21.(8分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.

    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    22.(10分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
    23.(12分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
    (1)求抛物线的解析式;
    (2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
    (3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

    24.为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
    设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    解:数据1出现了5次,最多,故为众数为1;
    按大小排列第6和第7个数均是1,所以中位数是1.
    故选D.
    【点睛】
    本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    2、C
    【解析】
    根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
    故选C.
    点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
    3、B
    【解析】
    试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
    考点:一元二次方程根的判别式.
    4、D
    【解析】
    根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
    【详解】
    设每枚黄金重x两,每枚白银重y两,
    由题意得:,
    故选:D.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    5、B
    【解析】
    根据同分母分式的加减运算法则计算可得.
    【详解】
    解:原式=
    =
    =
    =-1,
    故选B.
    【点睛】
    本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.
    6、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    7、D
    【解析】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.
    【详解】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.

    【点睛】
    本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
    8、C
    【解析】
    根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
    【详解】
    A、x2•x3=x5,故A选项错误;
    B、x2+x2=2x2,故B选项错误;
    C、(﹣2x)2=4x2,故C选项正确;
    D、( a+b)2=a2+2ab+b2,故D选项错误,
    故选C.
    【点睛】
    本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
    9、D
    【解析】
    抛物线的顶点坐标为P(−,),设A 、B两点的坐标为A(,0)、B(,0)则AB=,根据根与系数的关系把AB的长度用b、c表示,而S△APB=1,然后根据三角形的面积公式就可以建立关于b、c的等式.
    【详解】
    解:∵,
    ∴AB==,
    ∵若S△APB=1
    ∴S△APB=×AB× =1,

    ∴−××,
    ∴,
    设=s,
    则,
    故s=2,
    ∴=2,
    ∴.
    故选D.
    【点睛】
    本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.
    10、B
    【解析】
    分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
    【详解】
    解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
    B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
    C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
    D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
    故选:B.
    【点睛】
    本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    只要证明△PBC是等腰直角三角形即可解决问题.
    【详解】
    解:∵∠APO=∠BPO=30°,
    ∴∠APB=60°,
    ∵PA=PC=PB,∠APC=30°,
    ∴∠BPC=90°,
    ∴△PBC是等腰直角三角形,
    ∵OA=1,∠APO=30°,
    ∴PA=2OA=2,
    ∴BC=PC=2,
    故答案为2.
    【点睛】
    本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
    12、(2n﹣1,2n﹣1).
    【解析】
    解:∵y=x-1与x轴交于点A1,
    ∴A1点坐标(1,0),
    ∵四边形A1B1C1O是正方形,
    ∴B1坐标(1,1),
    ∵C1A2∥x轴,
    ∴A2坐标(2,1),
    ∵四边形A2B2C2C1是正方形,
    ∴B2坐标(2,3),
    ∵C2A3∥x轴,
    ∴A3坐标(4,3),
    ∵四边形A3B3C3C2是正方形,
    ∴B3(4,7),
    ∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
    ∴Bn坐标(2n-1,2n-1).
    故答案为(2n-1,2n-1).
    13、
    【解析】
    过O作OF⊥AO且使OF=AO,连接AF、CF,可知△AOF是等腰直角三角形,进而可得AF=AO,根据正方形的性质可得OB=OC,∠BOC=90°,由锐角互余的关系可得∠AOB=∠COF,进而可得△AOB≌△COF,即可证明AB=CF,当点A、C、F三点不共线时,根据三角形的三边关系可得AC+CF>AF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.
    【详解】
    如图,过O作OF⊥AO且使OF=AO,连接AF、CF,
    ∴∠AOF=90°,△AOF是等腰直角三角形,
    ∴AF=AO,
    ∵四边形BCDE是正方形,
    ∴OB=OC,∠BOC=90°,
    ∵∠BOC=∠AOF=90°,
    ∴∠AOB+∠AOC=∠COF+∠AOC,
    ∴∠AOB=∠COF,
    又∵OB=OC,AO=OF,
    ∴△AOB≌△COF,
    ∴CF=AB=4,
    当点A、C、F三点不共线时,AC+CF>AF,
    当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,
    ∴AF≤AC+CF=7,
    ∴AF的最大值是7,
    ∴AF=AO=7,
    ∴AO=.

    故答案为
    【点睛】
    本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.
    14、1
    【解析】
    ∵骑车的学生所占的百分比是×100%=35%,
    ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
    ∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
    故答案为1.
    15、
    【解析】
    如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.
    【详解】
    如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.

    ∵四边形ADEF是菱形,
    ∴F,D关于直线AE对称,
    ∴PF=PD,
    ∴PF+PB=PA+PB,
    ∵PD+PB≥BD,
    ∴PF+PB的最小值是线段BD的长,
    ∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=x,FG=x,
    ∵∠EGB=45°,EG⊥BG,
    ∴EG=BG=x,
    ∴x+x+x=3+,
    ∴x=2,
    ∴DH=1,BH=3,
    ∴BD==,
    ∴PF+PB的最小值为,
    故答案为.
    【点睛】
    本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.
    16、.
    【解析】
    平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
    【详解】
    ∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
    故答案为:y=1(x﹣1)1+1.
    【点睛】
    本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.

    三、解答题(共8题,共72分)
    17、30米
    【解析】
    设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.
    【详解】
    由题意得,∠ABD=30°,∠ACD=45°,BC=60m,
    设AD=xm,
    在Rt△ACD中,∵tan∠ACD=,
    ∴CD=AD=x,
    ∴BD=BC+CD=x+60,
    在Rt△ABD中,∵tan∠ABD=,
    ∴,
    ∴米,
    答:山高AD为30米.
    【点睛】
    本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
    18、(1)抽样调查(2)150°(3)180件(4)
    【解析】
    分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
    (2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;
    (3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
    (4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
    详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
    故答案为抽样调查.
    (2)所调查的4个班征集到的作品数为:6÷=24件,
    C班有24﹣(4+6+4)=10件,
    补全条形图如图所示,

    扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
    故答案为150°;
    (3)∵平均每个班=6件,
    ∴估计全校共征集作品6×30=180件.
    (4)画树状图得:

    ∵共有20种等可能的结果,两名学生性别相同的有8种情况,
    ∴恰好选取的两名学生性别相同的概率为.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)..
    19、 (1)见解析;(2)m=2
    【解析】
    (1)根据一元二次方程根的判别式进行分析解答即可;
    (2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
    【详解】
    (1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
    ∴方程有两个不相等的实数根;
    (2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
    解得:x=2m+2和x=2m-2,
    ∵2m+2>2m﹣2,x1>x2,
    ∴x1=2m+2,x2=2m﹣2,
    又∵x1=2x2,
    ∴2m+2=2(2m﹣2)解得:m=2.
    【点睛】
    (1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
    20、15天
    【解析】
    试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.
    试题解析:设工程期限为x天.
    根据题意得,
    解得:x=15.
    经检验x=15是原分式方程的解.
    答:工程期限为15天.
    21、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,

    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    22、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
    【解析】
    (1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
    (2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
    (3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
    【详解】
    (1)设y=kx+b(k≠0),
    根据题意得,
    解得:k=﹣2,b=220,
    ∴y=﹣2x+220(40≤x≤70);
    (2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
    (3)w=﹣2(x﹣75)2+21,
    ∵40≤x≤70,
    ∴x=70时,w有最大值为w=﹣2×25+21=2050元,
    ∴当销售单价为70元时,该公司日获利最大,为2050元.
    【点睛】
    此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
    23、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
    【解析】
    (1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
    (2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
    (3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
    【详解】
    解:(1)把代入,
    可以求得


    (2)过点作轴分别交线段和轴于点,
    在中,令,得

    设直线的解析式为
    可求得直线的解析式为:
    ∵S四边形ABCD


    当时,有最大值
    此时四边形ABCD面积有最大值
    (3)如图所示,

    如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
    ∵C(0,-3)
    ∴设P1(x,-3)
    ∴x2-x-3=-3,解得x1=0,x2=3,
    ∴P1(3,-3);
    ②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
    ∵C(0,-3)
    ∴设P(x,3),
    ∴x2-x-3=3,
    x2-3x-8=0
    解得x=或x=,
    此时存在点P2(,3)和P3(,3),
    综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
    【点睛】
    此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
    24、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
    【解析】
    试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.
    试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,
    从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,
    所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,
    x的取值范围是30≤x≤1.
    (2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,
    当x=1时,y=﹣8×1+2560=1920,
    此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
    考点:一次函数的应用.

    相关试卷

    山东省潍坊市寿光市2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份山东省潍坊市寿光市2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,下列运算正确的是等内容,欢迎下载使用。

    山东省寿光市纪台镇第二初级中学2022年中考考前最后一卷数学试卷含解析: 这是一份山东省寿光市纪台镇第二初级中学2022年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,点P等内容,欢迎下载使用。

    2022年潍坊市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年潍坊市重点中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了如图所示,下列各式计算正确的是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map