![山东省郓城第一中学2021-2022学年中考数学仿真试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13562392/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省郓城第一中学2021-2022学年中考数学仿真试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13562392/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省郓城第一中学2021-2022学年中考数学仿真试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13562392/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省郓城第一中学2021-2022学年中考数学仿真试卷含解析
展开
这是一份山东省郓城第一中学2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
A. B. C. D.
2.的负倒数是( )
A. B.- C.3 D.﹣3
3.一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列图形中既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
5.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
6.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是( )
A.12 B.14 C.16 D.18
8.已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )
A.-6 B.- 3 C.3 D.6
9.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数
10
20
30
50
100
150
180
240
330
450
“和为7”出现频数
2
7
10
16
30
46
59
81
110
150
“和为7”出现频率
0.20
0.35
0.33
0.32
0.30
0.30
0.33
0.34
0.33
0.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
A.0.33 B.0.34 C.0.20 D.0.35
10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
11.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
A. B. C. D.
12.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为( )
A.38° B.39° C.42° D.48°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_____.
14.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).
15.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
16.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cos∠AMC ,则 tan∠B 的值为__________.
17.已知,且,则的值为__________.
18.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;
(2)将条形统计图补充完整;
(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?
(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.
20.(6分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
21.(6分)计算:|﹣1|﹣2sin45°+﹣
22.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
23.(8分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=______,连接OF;
(3)在CD边上取点G,使CG=______,连接OG;
(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
24.(10分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
25.(10分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
.
26.(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.
(1)直接写出关于原点的中心对称图形各顶点坐标:________________________;
(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.
27.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据中位数的定义进行解答
【详解】
将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
【点睛】
本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
2、D
【解析】
根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.
【详解】
根据倒数的定义得:2×=1.
因此的负倒数是-2.
故选D.
【点睛】
本题考查了倒数,解题的关键是掌握倒数的概念.
3、B
【解析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
【详解】
解:∵,
∴函数图象一定经过一、三象限;
又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限
故选B
【点睛】
此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
4、C
【解析】
根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A错误;
B、是轴对称图形,不是中心对称图形,故B错误;
C、既是轴对称图形,也是中心对称图形,故C正确;
D、既不是轴对称图形,也不是中心对称图形,故D错误;
故选:C.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.
5、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份山东省泰安第十中学2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是假命题的是等内容,欢迎下载使用。
这是一份2021-2022学年重庆市中学中考数学仿真试卷含解析,共19页。试卷主要包含了定义,-5的相反数是等内容,欢迎下载使用。
这是一份2021-2022学年山东省郓城第一中学中考数学最后冲刺浓缩精华卷含解析,共23页。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)