年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省枣庄2021-2022学年中考数学模试卷含解析

    山东省枣庄2021-2022学年中考数学模试卷含解析第1页
    山东省枣庄2021-2022学年中考数学模试卷含解析第2页
    山东省枣庄2021-2022学年中考数学模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省枣庄2021-2022学年中考数学模试卷含解析

    展开

    这是一份山东省枣庄2021-2022学年中考数学模试卷含解析,共20页。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下面说法正确的个数有(  )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    2.若,代数式的值是  
    A.0 B. C.2 D.
    3.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=( )
    A.6 B.8 C.10 D.12
    4.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为(  )
    A.0 B.﹣1 C.1 D.2
    5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是(  )cm.

    A.7 B.11 C.13 D.16
    6.下列基本几何体中,三视图都是相同图形的是(  )
    A. B. C. D.
    7.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为(  )
    A.1 B.2 C.3 D.4
    8.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )
    A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×1014
    9.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    10.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.

    12.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.
    13.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
    14.计算:(π﹣3)0﹣2-1=_____.
    15.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.

    16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.

    17.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.

    19.(5分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.

    20.(8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.
    求证:△AED≌△EBC;当AB=6时,求CD的长.
    21.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
    类别
    频数(人数)
    频率
    小说

    0.5
    戏剧
    4

    散文
    10
    0.25
    其他
    6

    合计

    1
    根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

    22.(10分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.

    (1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
    (2)知识探究:
    ①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
    ②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
    (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.

    23.(12分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.
    24.(14分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.
    如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=   (用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.
    ①求a与b的值;
    ②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    2、D
    【解析】
    由可得,整体代入到原式即可得出答案.
    【详解】
    解:,

    则原式.
    故选:D.
    【点睛】
    本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
    3、C
    【解析】
    试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.
    解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,
    ∴x1+x2=2,x1•x2=﹣3,
    ∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.
    故选C.
    4、C
    【解析】
    试题分析:把方程的解代入方程,可以求出字母系数a的值.
    ∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
    故本题选C.
    【考点】一元二次方程的解;一元二次方程的定义.
    5、C
    【解析】
    直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
    【详解】
    ∵将线段DC沿着CB的方向平移7cm得到线段EF,
    ∴EF=DC=4cm,FC=7cm,
    ∵AB=AC,BC=12cm,
    ∴∠B=∠C,BF=5cm,
    ∴∠B=∠BFE,
    ∴BE=EF=4cm,
    ∴△EBF的周长为:4+4+5=13(cm).
    故选C.
    【点睛】
    此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
    6、C
    【解析】
    根据主视图、左视图、俯视图的定义,可得答案.
    【详解】
    球的三视图都是圆,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.
    7、B
    【解析】
    先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答
    【详解】
    将点A(1,0)代入y=x2﹣4x+m,
    得到m=3,
    所以y=x2﹣4x+3,与x轴交于两点,
    设A(x1,y1),b(x2,y2)
    ∴x2﹣4x+3=0有两个不等的实数根,
    ∴x1+x2=4,x1•x2=3,
    ∴AB=|x1﹣x2|= =2;
    故选B.
    【点睛】
    此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.
    8、B
    【解析】
    由科学记数法的定义可得答案.
    【详解】
    解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,
    故选B.
    【点睛】
    科学记数法表示数的标准形式为 (<10且n为整数).
    9、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    10、C
    【解析】
    先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
    【详解】
    解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
    后面一排分别有2个、3个、1个小正方体搭成三个长方体,
    并且这两排右齐,故从正面看到的视图为:

    故选:C.
    【点睛】
    本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、75
    【解析】
    因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
    因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
    所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
    所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
    所以∠BAE=15°,所以∠AEB=90°-15°=75°.
    故答案为75.
    12、y=x+1
    【解析】
    已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.
    【详解】
    ∵直线 y=x 沿y轴向上平移1个单位长度,
    ∴所得直线的函数关系式为:y=x+1.
    ∴A(0,1),B(1,0),
    ∴AB=1,
    过点 O 作 OF⊥AB 于点 F,

    则AB•OF=OA•OB,
    ∴OF=,
    即这两条直线间的距离为.
    故答案为y=x+1,.
    【点睛】
    本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m.
    13、2或14
    【解析】
    分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
    【详解】
    ①当弦AB和CD在圆心同侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AE=8cm,CF=6cm,
    ∵OA=OC=10cm,
    ∴EO=6cm,OF=8cm,
    ∴EF=OF−OE=2cm;
    ②当弦AB和CD在圆心异侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AF=8cm,CE=6cm,
    ∵OA=OC=10cm,
    ∴OF=6cm,OE=8cm,
    ∴EF=OF+OE=14cm.
    ∴AB与CD之间的距离为14cm或2cm.
    故答案为:2或14.
    14、
    【解析】
    分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.
    【详解】
    解:(π﹣3)0﹣2-1=1-=.
    故答案为:.
    【点睛】
    本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.
    15、
    【解析】
    试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.
    16、10°
    【解析】
    根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
    【详解】
    ∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
    ∴AD=BD,AE=CE,
    ∴∠B=∠BAD,∠C=∠CAE,
    ∵∠B=40°,∠C=45°,
    ∴∠B+∠C=85°,
    ∴∠BAD+∠CAE=85°,
    ∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
    故答案为10°
    【点睛】
    本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
    17、1
    【解析】
    设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,
    ∵tan∠BAO=2,
    ∴=2,
    ∵S△ABO=•AO•BO=4,
    ∴AO=2,BO=4,
    ∵△ABO≌△A'O'B,
    ∴AO=A′O′=2,BO=BO′=4,
    ∵点C为斜边A′B的中点,CD⊥BO′,
    ∴CD=A′O′=1,BD=BO′=2,
    ∴x=BO﹣CD=4﹣1=3,y=BD=2,
    ∴k=x·y=3×2=1.
    故答案为1.


    三、解答题(共7小题,满分69分)
    18、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.
    【解析】
    分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;
    (2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.
    详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=(米)
    答:坡底C点到大楼距离AC的值是20米.
    (2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,

    ∴AF=DE,DF=AE.
    设CD=x米,在Rt△CDE中,DE=x米,CE=x米
    在Rt△BDF中,∠BDF=45°,
    ∴BF=DF=AB-AF=60-x(米)
    ∵DF=AE=AC+CE,
    ∴20+x=60-x
    解得:x=80-120(米)
    故斜坡CD的长度为(80-120)米.
    点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.
    19、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
    【解析】
    (1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
    (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
    【详解】
    解:∵B(2,﹣4)在反比例函数y=的图象上,
    ∴m=2×(﹣4)=﹣8,
    ∴反比例函数解析式为:y=﹣,
    把A(﹣4,n)代入y=﹣,
    得﹣4n=﹣8,解得n=2,
    则A点坐标为(﹣4,2).
    把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
    得,解得,
    ∴一次函数的解析式为y=﹣x﹣2;
    (2)∵y=﹣x﹣2,
    ∴当﹣x﹣2=0时,x=﹣2,
    ∴点C的坐标为:(﹣2,0),
    △AOB的面积=△AOC的面积+△COB的面积
    =×2×2+×2×4
    =6;
    (3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
    【点睛】
    本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
    20、(1)证明见解析;(2)CD =3
    【解析】
    分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;
    (2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.
    详解:
    (1)证明 :∵AD∥EC
    ∴∠A=∠BEC
    ∵E是AB中点,
    ∴AE=BE
    ∵∠AED=∠B
    ∴△AED≌△EBC
    (2)解 :∵△AED≌△EBC
    ∴AD=EC
    ∵AD∥EC
    ∴四边形AECD是平行四边形
    ∴CD=AE
    ∵AB=6
    ∴CD= AB=3
    点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    21、(1)41(2)15%(3)
    【解析】
    (1)用散文的频数除以其频率即可求得样本总数;
    (2)根据其他类的频数和总人数求得其百分比即可;
    (3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
    【详解】
    (1)∵喜欢散文的有11人,频率为1.25,
    ∴m=11÷1.25=41;
    (2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
    故答案为15%;
    (3)画树状图,如图所示:

    所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
    ∴P(丙和乙)==.
    22、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
    【解析】
    (1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
    (2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
    (3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
    【详解】
    解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
    ∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
    ∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,
    ,
    ∴△BAE≌△CAF,
    ∴BE=CF,
    ∴EC+CF=EC+BE=BC,
    即EC+CF=BC;
    (2)知识探究:
    ①线段EC,CF与BC的数量关系为:CE+CF=BC.
    理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.

    类比(1)可得:E′C+CF′=BC,
    ∵AE′∥EG,
    ∴△CAE′∽△CGE


    同理可得:,

    即;
    ②CE+CF=BC.
    理由如下:
    过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.

    类比(1)可得:E′C+CF′=BC,
    ∵AE′∥EG,∴△CAE′∽△CAE,
    ∴,∴CE=CE′,
    同理可得:CF=CF′,
    ∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
    即CE+CF=BC;
    (3)连接BD与AC交于点H,如图所示:

    在Rt△ABH中,
    ∵AB=8,∠BAC=60°,
    ∴BH=ABsin60°=8×=,
    AH=CH=ABcos60°=8×=4,
    ∴GH===1,
    ∴CG=4-1=3,
    ∴,
    ∴t=(t>2),
    由(2)②得:CE+CF=BC,
    ∴CE=BC -CF=×8-=.
    【点睛】
    本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
    23、50千米/小时.
    【解析】
    根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.
    【详解】
    解:设货车的速度为x千米/小时,依题意得:
    解:根据题意,得

    解得:x=50
    经检验x=50是原方程的解.
    答:货车的速度为50千米/小时.
    【点睛】
    本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.
    24、(1) ;(2)①a=1,b=-1,②m=2.
    【解析】
    (1)根据题目中的新运算法则计算即可;
    (2)①根据题意列出方程组即可求出a,b的值;
    ②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.
    【详解】
    解:(1)T(4,﹣1)=
    =;
    故答案为;
    (2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,

    解得
    ②解法一:
    ∵a=1,b=﹣1,且x+y≠0,
    ∴T(x,y)===x﹣y.
    ∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,
    T(m,3m﹣3)=m﹣3m+3=﹣2m+3.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴2m﹣3=﹣2m+3,
    解得,m=2.
    解法二:由解法①可得T(x,y)=x﹣y,
    当T(x,y)=T(y,x)时,
    x﹣y=y﹣x,
    ∴x=y.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴3m﹣3=m,
    ∴m=2.
    【点睛】
    本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..

    相关试卷

    2024年山东省枣庄市市中区中考数学一模试卷(含解析):

    这是一份2024年山东省枣庄市市中区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省枣庄市峄城区中考数学一模试卷(含解析):

    这是一份2023年山东省枣庄市峄城区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省枣庄市中考数学二模试卷(含解析):

    这是一份2023年山东省枣庄市中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map