山东省枣庄市市中学区2022年中考数学模拟预测试卷含解析
展开
这是一份山东省枣庄市市中学区2022年中考数学模拟预测试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若等式x2+ax+19=,在直角坐标系中,已知点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )
A.3 B.3.2 C.4 D.4.5
2.下列汽车标志中,不是轴对称图形的是( )
A. B. C. D.
3.下列计算中,错误的是( )
A.; B.; C.; D..
4.下列图形中是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
5.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )
A. B. C. D.
6.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A. B. C. D.
7.如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A.2cm2 B.3cm2 C.4cm2 D.5cm2
8.若等式x2+ax+19=(x﹣5)2﹣b成立,则 a+b的值为( )
A.16 B.﹣16 C.4 D.﹣4
9.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
10.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
12.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.
13.已知是方程组的解,则3a﹣b的算术平方根是_____.
14.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.
15.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.
16.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.
三、解答题(共8题,共72分)
17.(8分)已知点O是正方形ABCD对角线BD的中点.
(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
①∠AEM=∠FEM; ②点F是AB的中点;
(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
18.(8分)先化简后求值:已知:x=﹣2,求的值.
19.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
译文为:
现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
请解答上述问题.
20.(8分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.
(1)直接写出点A的坐标;
(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.
①当∠BAC=90°时.求抛物线G2的表达式;
②若60°<∠BAC<120°,直接写出m的取值范围.
21.(8分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
(I)AC的长等于_____.
(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).
22.(10分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.
x
…
﹣3
﹣
﹣2
﹣
﹣1
﹣
0
1
2
…
y
…
﹣8
﹣
0
m
﹣
﹣2
﹣
0
12
…
(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有 个,分别为 ;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.
23.(12分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.
24.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.
2、C
【解析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形,故错误;
B、是轴对称图形,故错误;
C、不是轴对称图形,故正确;
D、是轴对称图形,故错误.
故选C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
3、B
【解析】
分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.
详解:A.,故A正确;
B.,故B错误;
C..故C正确;
D.,故D正确;
故选B.
点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.
4、C
【解析】
分析:根据轴对称图形与中心对称图形的概念求解.
详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项正确;
D、不是轴对称图形,也不是中心对称图形,故此选项错误.
故选:C.
点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
数据0.000000007用科学记数法表示为7×10-1.
故选A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、B
【解析】
根据俯视图是从上往下看的图形解答即可.
【详解】
从上往下看到的图形是:
.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
7、C
【解析】
延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.
【详解】
延长AP交BC于E.
∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.
在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.
故选C.
【点睛】
本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.
8、D
【解析】
分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.
详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,
可得a=-10,b=6,
则a+b=-10+6=-4,
故选D.
点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
9、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
10、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3.
【解析】
试题解析:把(-1,0)代入得:
2-3+k-2=0,
解得:k=3.
故答案为3.
12、1
【解析】
根据已知DE∥BC得出=进而得出BC的值
【详解】
∵DE∥BC,AD=6,BD=2,DE=3,
∴△ADE∽△ABC,
∴,
∴,
∴BC=1,
故答案为1.
【点睛】
此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.
13、2.
【解析】
灵活运用方程的性质求解即可。
【详解】
解:由是方程组的解,可得满足方程组,
由①+②的,3x-y=8,即可3a-b=8,
故3a﹣b的算术平方根是,
故答案:
【点睛】
本题主要考查二元一次方程组的性质及其解法。
14、1
【解析】
由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.
【详解】
如图,
∵双曲线y=(x>0)经过点D,
∴S△ODF=k=,
则S△AOB=2S△ODF=,即OA•BE=,
∴OA•BE=1,
∵四边形ABCD是矩形,
∴OA=OB,
∴OB•BE=1,
故答案为:1.
【点睛】
本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.
15、46
【解析】
试卷分析:根据平行线的性质和平角的定义即可得到结论.
解:∵直线a∥b,
∴∠3=∠1=34°,
∵∠BAC=100°,
∴∠2=180°−34°−100°=46°,
故答案为46°.
16、1.
【解析】
试题解析:连接OE,如下图所示,
则:OE=OA=R,
∵AB是⊙O的直径,弦EF⊥AB,
∴ED=DF=4,
∵OD=OA-AD,
∴OD=R-2,
在Rt△ODE中,由勾股定理可得:
OE2=OD2+ED2,
∴R2=(R-2)2+42,
∴R=1.
考点:1.垂径定理;2.解直角三角形.
三、解答题(共8题,共72分)
17、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
【解析】
试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.
考点:四边形综合题.
18、
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
解:原式=1﹣•(÷)=1﹣••=1﹣=,
当x=﹣2时,
原式===.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
19、共有7人,这个物品的价格是53元.
【解析】
根据题意,找出等量关系,列出一元一次方程.
【详解】
解:设共有x人,这个物品的价格是y元,
解得
答:共有7人,这个物品的价格是53元.
【点睛】
本题考查了二元一次方程的应用.
20、(1)(,2);(2)①y=(x-)2+2;②
【解析】
(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;
(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;
②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.
【详解】
(1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,
∴抛物线G2:y=m(x-)2+2,
∵点A是抛物线G2的顶点.
∴点A的坐标为(,2).
(2)①设抛物线对称轴与直线l交于点D,如图1所示.
∵点A是抛物线顶点,
∴AB=AC.
∵∠BAC=90°,
∴△ABC为等腰直角三角形,
∴CD=AD=,
∴点C的坐标为(2,).
∵点C在抛物线G2上,
∴=m(2-)2+2,
解得:.
②依照题意画出图形,如图2所示.
同理:当∠BAC=60°时,点C的坐标为(+1,);
当∠BAC=120°时,点C的坐标为(+3,).
∵60°<∠BAC<120°,
∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,
∴,
解得:.
【点睛】
此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.
21、 作a∥b∥c∥d,可得交点P与P′
【解析】
(1)根据勾股定理计算即可;
(2)利用平行线等分线段定理即可解决问题.
【详解】
(I)AC==,
故答案为:;
(II)如图直线l1,直线l2即为所求;
理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,
∴CP=PP′=P′A,
∴S△BCP=S△ABP′=S△ABC.
故答案为作a∥b∥c∥d,可得交点P与P′.
【点睛】
本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22、(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.
【解析】
试题分析:(1)求出x=﹣1时的函数值即可解决问题;利用描点法画出图象即可;
(2)利用图象以及表格即可解决问题;
(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围,观察图象即可解决问题.
试题解析:(1)由题意m=﹣1+2+1﹣2=2.
函数图象如图所示.
(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.
(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围.
观察图象可知,﹣2<x<﹣1或x>1.
23、见解析
【解析】
根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证.
【详解】
证明:ABC是等边三角形,
∴∠B=∠C=60°,
∴∠ADB=∠CAD+∠C= ∠CAD+60°,
∵∠ADE=60°,
∴∠ADB=∠BDE+60°,
∴∠CAD=∠BDE,
∴
【点睛】
考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.
24、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
相关试卷
这是一份2024年山东省枣庄市滕州市党山中学中考数学模拟试卷(二)(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省枣庄市滕州市滕南中学中考数学模拟试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省枣庄市滕州市滕南中学中考数学模拟试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。