年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省枣庄薛城区五校联考2022年中考联考数学试题含解析

    山东省枣庄薛城区五校联考2022年中考联考数学试题含解析第1页
    山东省枣庄薛城区五校联考2022年中考联考数学试题含解析第2页
    山东省枣庄薛城区五校联考2022年中考联考数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省枣庄薛城区五校联考2022年中考联考数学试题含解析

    展开

    这是一份山东省枣庄薛城区五校联考2022年中考联考数学试题含解析,共21页。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
    A.20 B.24 C.28 D.30
    2.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )

    A.2+ B.2+2 C.4 D.3
    3.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).

    A. B. C. D.
    4.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为(  )

    A. B. C. D.
    5.如图,函数y=kx+b(k≠0)与y= (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx+b>的解集为(  )

    A. B. C. D.
    6.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(  )

    A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31
    7.在0.3,﹣3,0,﹣这四个数中,最大的是(  )
    A.0.3 B.﹣3 C.0 D.﹣
    8.下列函数中,y随着x的增大而减小的是( )
    A.y=3x B.y=﹣3x C. D.
    9.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )

    A. B. C. D.
    10.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为(  )

    A.8 B.6 C.12 D.10
    11.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是(  )

    A.(1,4) B.(4,3) C.(2,4) D.(4,1)
    12.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
    A.120元 B.100元 C.80元 D.60元
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.

    14.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
    15.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
    16.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.
    17.已知a2+1=3a,则代数式a+的值为  .
    18.计算﹣的结果为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.

    (1)求证:;
    (2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
    (3)若PE=1,求△PBD的面积.
    20.(6分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
    (1)求证:△ACB∽△BED;
    (2)当AD⊥AC时,求 的值;
    (3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.

    21.(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.
    (1)求甲5时完成的工作量;
    (2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
    (3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?

    22.(8分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.

    (1)求观测点B到航线的距离;
    (2)求该轮船航行的速度(结果精确到0.1km/h).
    (参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
    23.(8分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.

    24.(10分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+()﹣1.
    (2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.
    25.(10分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)

    26.(12分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
    (1)求证:CE是⊙O的切线;
    (2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.

    27.(12分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    试题解析:根据题意得=30%,解得n=30,
    所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
    故选D.
    考点:利用频率估计概率.
    2、B
    【解析】
    分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.
    详解:∵DE垂直平分AB,
    ∴BE=AE,
    ∴AE+CE=BC=2,
    ∴△ACE的周长=AC+AE+CE=AC+BC=2+2,
    故选B.
    点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    3、D
    【解析】
    从正面看,共2列,左边是1个正方形,
    右边是2个正方形,且下齐.
    故选D.
    4、B
    【解析】
    根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
    故选B.
    点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
    5、B
    【解析】
    根据函数的图象和交点坐标即可求得结果.
    【详解】
    解:不等式kx+b> 的解集为:-6<x<0或x>2,
    故选B.
    【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.
    6、C
    【解析】
    本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
    【详解】
    ∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.
    故选:C.
    【点睛】
    此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
    7、A
    【解析】
    根据正数大于0,0大于负数,正数大于负数,比较即可
    【详解】
    ∵-3<-<0<0.3
    ∴最大为0.3
    故选A.
    【点睛】
    本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
    8、B
    【解析】
    试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;
    B、y=﹣3x,y随着x的增大而减小,正确;
    C、,每个象限内,y随着x的增大而减小,故此选项错误;
    D、,每个象限内,y随着x的增大而增大,故此选项错误;
    故选B.
    考点:反比例函数的性质;正比例函数的性质.
    9、C
    【解析】
    连接CD,交MN于E,
    ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
    ∴MN⊥CD,且CE=DE.∴CD=2CE.
    ∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
    ∴.
    ∵在△CMN中,∠C=90°,MC=6,NC=,∴
    ∴.
    ∴.故选C.
    10、C
    【解析】
    由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
    【详解】
    ∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
    ∴PA=PB=6,AC=EC,BD=ED,
    ∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
    即△PCD的周长为12,
    故选:C.
    【点睛】
    本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
    11、D
    【解析】
    先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.
    【详解】
    由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).
    【点睛】
    本题主要考察规律的探索,注意观察规律是解题的关键.
    12、C
    【解析】
    解:设该商品的进价为x元/件,
    依题意得:(x+20)÷=200,解得:x=1.
    ∴该商品的进价为1元/件.
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.5或3
    【解析】
    根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:
    如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;

    如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.

    故答案为1.5或3.
    点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.
    14、相离
    【解析】
    设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
    【详解】
    设圆O的半径是r,
    则πr2=9π,
    ∴r=3,
    ∵点0到直线l的距离为π,
    ∵3<π,
    即:r<d,
    ∴直线l与⊙O的位置关系是相离,
    故答案为:相离.
    【点睛】
    本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.
    15、1
    【解析】
    分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
    详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
    ∴k=1×1=1.
    点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
    16、有两个不相等的实数根.
    【解析】
    分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.
    详解:∵a=2,b=3,c=−2,

    ∴一元二次方程有两个不相等的实数根.
    故答案为有两个不相等的实数根.
    点睛:考查一元二次方程根的判别式,
    当时,方程有两个不相等的实数根.
    当时,方程有两个相等的实数根.
    当时,方程没有实数根.
    17、1
    【解析】
    根据题意a2+1=1a,整体代入所求的式子即可求解.
    【详解】
    ∵a2+1=1a,
    ∴a+=+===1.
    故答案为1.
    18、.
    【解析】
    根据同分母分式加减运算法则化简即可.
    【详解】
    原式=,
    故答案为.
    【点睛】
    本题考查了分式的加减运算,熟记运算法则是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)见解析;(2) AC∥BD,理由见解析;(3)
    【解析】
    (1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;
    (2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;
    (3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.
    【详解】
    (1)证明:∵△BCE和△CDP均为等腰直角三角形,
    ∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
    ∴△BCE∽△DCP,
    ∴;
    (2)解:结论:AC∥BD,
    理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
    ∴∠PCE=∠BCD,
    又∵,
    ∴△PCE∽△DCB,
    ∴∠CBD=∠CEP=90°,
    ∵∠ACB=90°,
    ∴∠ACB=∠CBD,
    ∴AC∥BD;
    (3)解:如图所示:作PM⊥BD于M,
    ∵AC=4,△ABC和△BEC均为等腰直角三角形,
    ∴BE=CE=4,
    ∵△PCE∽△DCB,
    ∴,即,
    ∴BD=,
    ∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,
    ∴PM=5sin45°=
    ∴△PBD的面积S=BD•PM=××=.

    【点睛】
    本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.
    20、(1)详见解析;(2) ;(3).
    【解析】
    (1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
    (2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
    (3)想办法证明AB垂直平分CF即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵DE⊥CB,
    ∴∠ACB=∠E=90°,
    ∵BD是切线,
    ∴AB⊥BD,
    ∴∠ABD=90°,
    ∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
    ∴∠ABC=∠BDE,
    ∴△ACB∽△BED;
    (2)解:如图2中,

    ∵△ACB∽△BED;四边形ACED是矩形,
    ∴BE:DE:BC=1:2:4,
    ∵DF∥BC,
    ∴△GCB∽△GDF,
    ∴=;
    (3)解:如图3中,

    ∵tan∠ABC==,AC=2,
    ∴BC=4,BE=4,DE=8,AB=2,BD=4,
    易证△DBE≌△DBF,可得BF=4=BC,
    ∴AC=AF=2,
    ∴CF⊥AB,设CF交AB于H,
    则CF=2CH=2×.
    【点睛】
    本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    21、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小时;
    【解析】
    (1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.
    【详解】
    (1)由图①得,总工作量为370件,由图②可得出乙完成了220件,
    故甲5时完成的工作量是1.
    (2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30
    故y甲=30t(0≤t≤5);
    乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,
    当0≤t≤2时,可得y乙=20t;
    当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:,
    解得:,
    故y乙=60t﹣80(2<t≤5).
    综上可得:y甲=30t(0≤t≤5);y乙=.
    (3)由题意得:,
    解得:t=,
    故改进后﹣2=小时后乙与甲完成的工作量相等.
    【点睛】
    本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.
    22、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h
    【解析】试题分析:(1)设AB与l交于点O,利用∠DAO=60°,利用∠DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;
    (2)先计算出DE=EF+DF=求出DE=5,再由进而由tan∠CBE=求出EC,即可求出CD的长,进而求出航行速度.
    试题解析:(1)设AB与l交于点O,

    在Rt△AOD中,
    ∵∠OAD=60°,AD=2(km),
    ∴OA==4(km),
    ∵AB=10(km),
    ∴OB=AB﹣OA=6(km),
    在Rt△BOE中,∠OBE=∠OAD=60°,
    ∴BE=OB•cos60°=3(km),
    答:观测点B到航线l的距离为3km;
    (2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2 ,
    ∵∠BEO=90°,BO=6,BE=3,∴OE==3,
    ∴DE=OD+OE=5(km);
    CE=BE•tan∠CBE=3tan76°,
    ∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),
    ∵5(min)= (h),∴v==12CD=12×3.38≈40.6(km/h),
    答:该轮船航行的速度约为40.6km/h.
    【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键.
    23、 (1)72°,见解析;(2)7280;(3).
    【解析】
    (1)根据题意列式计算,补全条形统计图即可;
    (2)根据题意列式计算即可;
    (3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
    【详解】
    (1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
    月季的株数为2000×90%-380-422-270=728(株),
    补全条形统计图如图所示:

    (2)月季的成活率为
    所以月季成活株数为8000×91%=7280(株).
    故答案为:7280.
    (3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:

    所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
    ∴P(恰好选到成活率较高的两类花苗)
    【点睛】
    此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
    24、(1)6;(2)﹣(x+1),1.
    【解析】
    (1)原式=3+1﹣2×+3=6
    (2)由题意可知:x2+3x+2=0,
    解得:x=﹣1或x=﹣2
    原式=(x﹣1)÷
    =﹣(x+1)
    当x=﹣1时,x+1=0,分式无意义,
    当x=﹣2时,
    原式=1
    25、古塔AB的高为(10+2)米.
    【解析】
    试题分析:延长EF交AB于点G.利用AB表示出EG,AC.让EG-AC=1即可求得AB长.
    试题解析:如图,延长EF交AB于点G.

    设AB=x米,则BG=AB﹣2=(x﹣2)米.
    则EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.
    则CD=EG﹣AC=(x﹣2)﹣x=1.
    解可得:x=10+2.
    答:古塔AB的高为(10+2)米.
    26、(1)证明见解析;(2)
    【解析】
    (1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
    (2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
    【详解】
    (1)证明:连接OC,AC.
    ∵CF⊥AB,CE⊥AD,且CE=CF.
    ∴∠CAE=∠CAB.
    ∵OC=OA,
    ∴∠CAB=∠OCA.
    ∴∠CAE=∠OCA.
    ∴OC∥AE.
    ∴∠OCE+∠AEC=180°,
    ∵∠AEC=90°,
    ∴∠OCE=90°即OC⊥CE,
    ∵OC是⊙O的半径,点C为半径外端,
    ∴CE是⊙O的切线.
    (2)解:∵AD=CD,
    ∴∠DAC=∠DCA=∠CAB,
    ∴DC∥AB,
    ∵∠CAE=∠OCA,
    ∴OC∥AD,
    ∴四边形AOCD是平行四边形,
    ∴OC=AD=a,AB=2a,
    ∵∠CAE=∠CAB,
    ∴CD=CB=a,
    ∴CB=OC=OB,
    ∴△OCB是等边三角形,
    在Rt△CFB中,CF= ,
    ∴S四边形ABCD= (DC+AB)•CF=
    【点睛】
    本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
    27、30.3米.
    【解析】
    试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
    试题解析:过点D作DE⊥AB于点E,
    在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
    ∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
    在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
    ∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
    ∴AB=AE+BE≈23.1+7.2=30.3米.


    相关试卷

    87,山东省枣庄市薛城区五校联考2023-2024学年九年级上学期1月月考数学试题:

    这是一份87,山东省枣庄市薛城区五校联考2023-2024学年九年级上学期1月月考数学试题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东枣庄薛城区五校联考2023-2024学年上学期九年级数学试题(1月):

    这是一份山东枣庄薛城区五校联考2023-2024学年上学期九年级数学试题(1月),共2页。

    2022年山东省枣庄台儿庄区四校联考中考联考数学试卷含解析:

    这是一份2022年山东省枣庄台儿庄区四校联考中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,估计的值在,下列各式计算正确的是,计算的结果为,点A关于原点对称的点的坐标是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map