山西临汾霍州第一期第二次月考2022年中考数学全真模拟试题含解析
展开
这是一份山西临汾霍州第一期第二次月考2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,一组数据,若点等内容,欢迎下载使用。
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(共10小题,每小题3分,共30分)1.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是( )A.点A落在BC边的中点 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC2.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A.3m B. m C. m D.4m3.下列图形不是正方体展开图的是( )A. B.C. D.4.下列图形中,属于中心对称图形的是( )A. B.C. D.5.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )A.2 B.3 C.5 D.76.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )A. B. C. D.7.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( ) A.12 B.16 C.18 D.248.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x19.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A.6.7×106 B.6.7×10﹣6 C.6.7×105 D.0.67×10710.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人二、填空题(本大题共6个小题,每小题3分,共18分)11.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.12.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有_____个.13.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.14.的倒数是 _____________.15.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.三、解答题(共8题,共72分)17.(8分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.18.(8分)计算:|﹣1|﹣2sin45°+﹣19.(8分)已知是上一点,.如图①,过点作的切线,与的延长线交于点,求的大小及的长;如图②,为上一点,延长线与交于点,若,求的大小及的长.20.(8分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=,求图中阴影部分的面积.21.(8分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.22.(10分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?23.(12分)先化简,再求值,,其中x=1.24.已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.
参考答案 一、选择题(共10小题,每小题3分,共30分)1、A【解析】
根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.2、B【解析】
因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故选:B.【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.3、B【解析】
由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.4、B【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.故选B.【点睛】本题考查了轴对称与中心对称图形的概念: 中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.6、D【解析】
先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),
∴点M到x轴的距离是3,到y轴的距离是4,
∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
∴r的取值范围是3<r<4,
故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.7、A【解析】
解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.8、D【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y=﹣中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.9、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6 700 000=6.7×106,故选:A【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1100万=11000000=1.1×107.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵点C的坐标为(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.12、1【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.13、【解析】
解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数(k≠0)的图象恰好经过点A′,B,∴ m•m=m,∴m=,∴k=故答案为14、【解析】先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.15、4.1.【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.【详解】解:取CD的值中点M,连接GM,FM.∵AG=CG,AE=EB,∴GE是△ABC的中位线∴EG=BC,同理可证:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四边形EFMG是菱形,∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,∴△EGF的面积的最大值为S四边形EFMG=4.1,故答案为4.1.【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.16、15【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.故答案为15π.考点:圆锥的计算. 三、解答题(共8题,共72分)17、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.【解析】:(1)原来一天可获利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品应降价2或8元;②观察图像可得18、﹣1【解析】
直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=(﹣1)﹣2×+2﹣4=﹣1﹣+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.19、(Ⅰ),PA=4;(Ⅱ),【解析】
(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解【详解】解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.∴∠AOC=60°.∵PC是○O的切线,OC为○O的半径,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用20、(1)见解析;(2) 【解析】
(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.【详解】(1)证明:连接OD、CD,如图,∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,∴AC为⊙O的切线,∵EF为⊙O的切线,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴点F是AC中点;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,∵EF为切线,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.21、证明见解析.【解析】
由题意易用角角边证明△BDE≌△CDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长.【详解】证明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中线,∴BD=CD,∴在△BED与△CFD中, ,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①, AD=AE-DE②,由①+②得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.22、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】
设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论.【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:.答:购进猕猴桃20千克,购进芒果30千克.元.答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.23、1.【解析】
先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()×=×=;将x=1代入原式==1.【点睛】分式的化简求值24、11【解析】
将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质
相关试卷
这是一份2023-2024学年山西临汾霍州第一期第二次月考数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,设,则代数式的值为,如图,已知点A等内容,欢迎下载使用。
这是一份山西省临汾市霍州市2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份山西临汾霍州第一期第二次月考2023-2024学年八上数学期末学业水平测试试题含答案,共7页。试卷主要包含了下列各点中位于第四象限的点是,下列图形中对称轴条数最多的是,现有纸片,计算等内容,欢迎下载使用。