搜索
    上传资料 赚现金
    英语朗读宝

    山西农业大学附属学校2021-2022学年中考数学五模试卷含解析

    山西农业大学附属学校2021-2022学年中考数学五模试卷含解析第1页
    山西农业大学附属学校2021-2022学年中考数学五模试卷含解析第2页
    山西农业大学附属学校2021-2022学年中考数学五模试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西农业大学附属学校2021-2022学年中考数学五模试卷含解析

    展开

    这是一份山西农业大学附属学校2021-2022学年中考数学五模试卷含解析,共22页。试卷主要包含了下列图案中,是轴对称图形的是,如果,那么代数式的值是,已知等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列图形中,是轴对称图形但不是中心对称图形的是(  )
    A.直角梯形 B.平行四边形 C.矩形 D.正五边形
    2.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是(  )

    A.30° B.60° C.90° D.45°
    3.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    4.下列图案中,是轴对称图形的是( )
    A. B. C. D.
    5.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )

    A.①② B.②③ C.①③ D.②④
    7.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是(  )

    A.﹣8 B.﹣4 C.4 D.8
    8.如果,那么代数式的值是( )
    A.6 B.2 C.-2 D.-6
    9.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标(  )

    A. B.
    C. D.
    10.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .

    12.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.

    13.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______

    14.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.

    15.观察下列等式:
    第1个等式:a1=;
    第2个等式:a2=;
    第3个等式:a3=;

    请按以上规律解答下列问题:
    (1)列出第5个等式:a5=_____;
    (2)求a1+a2+a3+…+an=,那么n的值为_____.
    16.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.

    三、解答题(共8题,共72分)
    17.(8分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
    (1)在图1中证明小胖的发现;
    借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
    (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
    (3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

    18.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.

    19.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
    (1)求每部型手机和型手机的销售利润;
    (2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
    ①求关于的函数关系式;
    ②该手机店购进型、型手机各多少部,才能使销售总利润最大?
    (3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
    20.(8分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
    销售时段
    销售数量
    销售收入
    种型号
    种型号
    第一周
    3台
    4台
    1200元
    第二周
    5台
    6台
    1900元
    (进价、售价均保持不变,利润=销售收入—进货成本)
    (1)求、两种型号的电器的销售单价;
    (2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
    (3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
    21.(8分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.
    求:△ABD的面积.

    22.(10分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
    求证:PE⊥PF.

    23.(12分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)
    (1)当y=0时,求x的值.
    (2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cot∠MCB的值.
    24.解不等式组: ,并写出它的所有整数解.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
    详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
    B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
    C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
    D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    2、B
    【解析】
    【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
    【详解】∵∠BAC=30°,
    ∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
    故选B.
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    3、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    4、B
    【解析】
    根据轴对称图形的定义,逐一进行判断.
    【详解】
    A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
    故选B.
    【点睛】
    本题考查的是轴对称图形的定义.
    5、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形
    6、B
    【解析】
    A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
    当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
    B、∵四边形ABCD是平行四边形,
    ∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
    C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
    D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
    故选C.
    7、B
    【解析】
    根据反比例函数的图象和性质结合矩形和三角形面积解答.
    【详解】

    解:作,连接.

    ∵四边形AHEB,四边形ECOH都是矩形,BE=EC,


    故选B.
    【点睛】
    此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
    8、A
    【解析】
    【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
    【详解】∵3a2+5a-1=0,
    ∴3a2+5a=1,
    ∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
    故选A.
    【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
    9、C
    【解析】
    由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
    B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
    C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
    【详解】
    ∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
    ∴A、D选项不符合题意;
    B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
    ∴B选项不符合题意;
    C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
    ∴C选项符合题意.
    故选:C.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
    10、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.
    【详解】
    解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,

    在Rt△ADC中,∵sin∠DAC=,
    ∴∠DAC=30°,
    ∵BA=BC,∠ABC=90°,
    ∴∠BAC=∠BCA=45°,
    ∵∠ADC=∠ABC=90°,
    ∴A,B,C,D四点共圆,
    ∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°
    在三角形CBD中,作CH⊥BD于H,
    BD=DH+BH=4×cos45°+×cos30°=,
    ∵CD=DF,CB=BG,
    ∴GF=2BD=,
    △CQR的周长的最小值为.
    【点睛】
    本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.
    12、6.4
    【解析】
    根据平行投影,同一时刻物长与影长的比值固定即可解题.
    【详解】
    解:由题可知:,
    解得:树高=6.4米.
    【点睛】
    本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
    13、
    【解析】
    由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    由图象可知:抛物线开口方向向下,则,
    对称轴直线位于y轴右侧,则a、b异号,即,
    抛物线与y轴交于正半轴,则,,故正确;
    对称轴为,,故正确;
    由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,
    所以当时,,即,故正确;
    抛物线与x轴有两个不同的交点,则,所以,故错误;
    当时,,故正确.
    故答案为.
    【点睛】
    本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
    14、(﹣,1)
    【解析】
    如图作AF⊥x轴于F,CE⊥x轴于E.

    ∵四边形ABCD是正方形,
    ∴OA=OC,∠AOC=90°,
    ∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
    ∴∠COE=∠OAF,
    在△COE和△OAF中,

    ∴△COE≌△OAF,
    ∴CE=OF,OE=AF,
    ∵A(1,),
    ∴CE=OF=1,OE=AF=,
    ∴点C坐标(﹣,1),
    故答案为(,1).
    点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    15、 49
    【解析】
    (1)观察等式可得 然后根据此规律就可解决问题;
    (2)只需运用以上规律,采用拆项相消法即可解决问题.
    【详解】
    (1)观察等式,可得以下规律:,

    (2)

    解得:n=49.
    故答案为:49.
    【点睛】
    属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
    16、4cm.
    【解析】
    由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
    【详解】
    由题意知OD⊥AB,交AB于点E,
    ∵AB=16cm,
    ∴BC=AB=×16=8cm,
    在Rt△OBE中,
    ∵OB=10cm,BC=8cm,
    ∴OC=(cm),
    ∴CD=OD-OC=10-6=4(cm)
    故答案为4cm.
    【点睛】
    本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)证明见解析;(3)∠EAF =m°.
    【解析】
    分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
    (2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.
    详(1)证明:如图1中,

    ∵∠BAC=∠DAE,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC,
    ∴BD=EC.
    (2)证明:如图2中,延长DC到E,使得DB=DE.

    ∵DB=DE,∠BDC=60°,
    ∴△BDE是等边三角形,
    ∴∠BD=BE,∠DBE=∠ABC=60°,
    ∴∠ABD=∠CBE,
    ∵AB=BC,
    ∴△ABD≌△CBE,
    ∴AD=EC,
    ∴BD=DE=DC+CE=DC+AD.
    ∴AD+CD=BD.
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.

    由(1)可知△EAB≌△GAC,
    ∴∠1=∠2,BE=CG,
    ∵BD=DC,∠BDE=∠CDM,DE=DM,
    ∴△EDB≌△MDC,
    ∴EM=CM=CG,∠EBC=∠MCD,
    ∵∠EBC=∠ACF,
    ∴∠MCD=∠ACF,
    ∴∠FCM=∠ACB=∠ABC,
    ∴∠1=3=∠2,
    ∴∠FCG=∠ACB=∠MCF,
    ∵CF=CF,CG=CM,
    ∴△CFG≌△CFM,
    ∴FG=FM,
    ∵ED=DM,DF⊥EM,
    ∴FE=FM=FG,
    ∵AE=AG,AF=AF,
    ∴△AFE≌△AFG,
    ∴∠EAF=∠FAG=m°.
    点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
    18、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
    【解析】
    (1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
    (2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
    【详解】
    (1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
    ∴﹣a+3=2,b=﹣×4+3,
    ∴a=2,b=1,
    ∴点A的坐标为(2,2),点B的坐标为(4,1),
    又∵点A(2,2)在反比例函数y=的图象上,
    ∴k=2×2=4,
    ∴反比例函数的表达式为y=(x>0);
    (2)延长CA交y轴于点E,延长CB交x轴于点F,

    ∵AC∥x轴,BC∥y轴,
    则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
    ∴四边形OECF为矩形,且CE=4,CF=2,
    ∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
    =2×4﹣×2×2﹣×4×1
    =4,
    设点P的坐标为(0,m),
    则S△OAP=×2•|m|=4,
    ∴m=±4,
    ∴点P的坐标为(0,4)或(0,﹣4).
    【点睛】
    此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
    19、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
    【解析】
    (1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
    (2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
    ②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
    (3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
    【详解】
    解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
    根据题意,得,
    解得
    答:每部型手机的销售利润为元,每部型手机的销售利润为元.
    (2)①根据题意,得,即.
    ②根据题意,得,解得.
    ,,
    随的增大而减小.
    为正整数,
    当时,取最大值,.
    即手机店购进部型手机和部型手机的销售利润最大.
    (3)根据题意,得.
    即,.
    ①当时,随的增大而减小,
    当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
    ②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
    ③当时,,随的增大而增大,
    当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
    【点睛】
    本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
    20、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.
    【解析】
    (1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;
    (2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;
    (3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.
    【详解】
    解:(1)设A型电器销售单价为x元,B型电器销售单价y元,
    则 ,
    解得:,
    答:A型电器销售单价为200元,B型电器销售单价150元;
    (2)设A型电器采购a台,
    则160a+120(50−a)≤7500,
    解得:a≤,
    则最多能采购37台;
    (3)设A型电器采购a台,
    依题意,得:(200−160)a+(150−120)(50−a)>1850,
    解得:a>35,
    则35<a≤,
    ∵a是正整数,
    ∴a=36或37,
    方案一:采购A型36台B型14台;
    方案二:采购A型37台B型13台.
    【点睛】
    本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
    21、2.
    【解析】
    试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.
    解:在△ADC中,AD=15,AC=12,DC=9,
    AC2+DC2=122+92=152=AD2,
    即AC2+DC2=AD2,
    ∴△ADC是直角三角形,∠C=90°,
    在Rt△ABC中,BC===16,
    ∴BD=BC﹣DC=16﹣9=7,
    ∴△ABD的面积=×7×12=2.
    22、证明见解析.
    【解析】
    由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
    【详解】
    ∵四边形内接于圆,
    ∴,
    ∵平分,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵平分,
    ∴.
    【点睛】
    此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
    23、(1),;(2)
    【解析】
    (1)当y=0,则x2-4x-5=0,解方程即可得到x的值.
    (2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cot∠MCB.
    【详解】
    (1)把代入函数解析式得,
    即,
    解得:,.
    (2)把代入得,即得,
    ∵二次函数,与轴的交点为,∴点坐标为.
    设直线的解析式为,代入,得解得,
    ∴,
    ∴点坐标为,
    在中,又∵
    ∴.
    【点睛】
    本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.
    24、﹣2,﹣1,0,1,2;
    【解析】
    首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.
    【详解】
    解:解不等式(1),得
    解不等式(2),得x≤2
    所以不等式组的解集:-3<x≤2
    它的整数解为:-2,-1,0,1,2

    相关试卷

    2023-2024学年山西农业大学附属学校九上数学期末质量跟踪监视试题含答案:

    这是一份2023-2024学年山西农业大学附属学校九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了下列事件是必然事件的是,的值为等内容,欢迎下载使用。

    山西农业大学附属学校2023-2024学年数学八上期末学业质量监测模拟试题含答案:

    这是一份山西农业大学附属学校2023-2024学年数学八上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了已知则的值为,分式有意义,x的取值范围是,若,且,则的值可能是,一元二次方程,经过配方可变形为等内容,欢迎下载使用。

    2022-2023学年山西农业大学附属学校数学七下期末监测试题含答案:

    这是一份2022-2023学年山西农业大学附属学校数学七下期末监测试题含答案,共6页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map