山东省枣庄市峄城区第二十八中学2021-2022学年中考四模数学试题含解析
展开
这是一份山东省枣庄市峄城区第二十八中学2021-2022学年中考四模数学试题含解析,共23页。试卷主要包含了若一个正比例函数的图象经过A,下列各式中正确的是,下列哪一个是假命题等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
2.二次函数y=-x2-4x+5的最大值是( )
A.-7 B.5 C.0 D.9
3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为( )
A.c•sin2α B.c•cos2α C.c•sinα•tanα D.c•sinα•cosα
4.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
A.2 B.8 C.﹣2 D.﹣8
5.一组数据3、2、1、2、2的众数,中位数,方差分别是( )
A.2,1,0.4 B.2,2,0.4
C.3,1,2 D.2,1,0.2
6.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )
A.0.1 B.0.2
C.0.3 D.0.4
7.下列各式中正确的是( )
A. =±3 B. =﹣3 C. =3 D.
8.下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
9.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A. B. C. D.
10.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )
A.y1 B.y2 C.y3 D.y4
11.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
12.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )
A.π B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
14.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.
15.a(a+b)﹣b(a+b)=_____.
16.若xay与3x2yb是同类项,则ab的值为_____.
17.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程).
18.如图,中,∠,,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么△的面积的最小值为____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
20.(6分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.
21.(6分)如图,在梯形中,,,,,点为边上一动点,作⊥,垂足在边上,以点为圆心,为半径画圆,交射线于点.
(1)当圆过点时,求圆的半径;
(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;
(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.
22.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=,求点P的坐标.
23.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)
24.(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
25.(10分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.
(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;
(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.
图① 图② 图③
26.(12分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:
该校被抽取的男生跳绳成绩频数分布直方图
(1)本次调查中,男生的跳绳成绩的中位数在________等级;
(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.
27.(12分)已知a2+2a=9,求的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
【详解】
∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
∴AB=BD , AC=CD ,
∵AB=AC ,
∴AB=BD=CD=AC ,
∴ 四边形 ABDC 是菱形;
故选A.
【点睛】
本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
2、D
【解析】
直接利用配方法得出二次函数的顶点式进而得出答案.
【详解】
y=﹣x2﹣4x+5=﹣(x+2)2+9,
即二次函数y=﹣x2﹣4x+5的最大值是9,
故选D.
【点睛】
此题主要考查了二次函数的最值,正确配方是解题关键.
3、D
【解析】
根据锐角三角函数的定义可得结论.
【详解】
在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα= ,
∴BC=c•sinα,
∵∠A+∠B=90°,∠DCB+∠B=90°,
∴∠DCB=∠A=α
在Rt△DCB中,∠CDB=90°,
∴cos∠DCB= ,
∴CD=BC•cosα=c•sinα•cosα,
故选D.
4、A
【解析】
试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
考点:一次函数图象上点的坐标特征.
5、B
【解析】
试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
故选B.
6、B
【解析】
∵在5.5~6.5组别的频数是8,总数是40,
∴=0.1.
故选B.
7、D
【解析】
原式利用平方根、立方根定义计算即可求出值.
【详解】
解:A、原式=3,不符合题意;
B、原式=|-3|=3,不符合题意;
C、原式不能化简,不符合题意;
D、原式=2-=,符合题意,
故选:D.
【点睛】
此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.
8、C
【解析】
分析:
根据每个选项所涉及的数学知识进行分析判断即可.
详解:
A选项中,“五边形的外角和为360°”是真命题,故不能选A;
B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
故选C.
点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
9、A
【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
【详解】
过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
故选A.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
10、A
【解析】
由图象的点的坐标,根据待定系数法求得解析式即可判定.
【详解】
由图象可知:
抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;
抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;
抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;
抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;
综上,解析式中的二次项系数一定小于1的是y1
故选A.
【点睛】
本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.
11、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
12、B
【解析】
连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
【详解】
解:连接OB,OC.
∵∠BOC=2∠BAC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=1,
∴的长=,
故选B.
【点睛】
考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、,.
【解析】
试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
试题解析:如图:
当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为矩形;
当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为菱形.
考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
14、
【解析】
∵AB=AC,AD⊥BC,
∴BD=CD=2,
∵BE、AD分别是边AC、BC上的高,
∴∠ADC=∠BEC=90°,
∵∠C=∠C,
∴△ACD∽△BCE,
∴,
∴,
∴CE=,
故答案为.
15、(a+b)(a﹣b).
【解析】
先确定公因式为(a+b),然后提取公因式后整理即可.
【详解】
a(a+b)﹣b(a+b)=(a+b)(a﹣b).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
16、2
【解析】
试题解析:∵xay与3x2yb是同类项,
∴a=2,b=1,
则ab=2.
17、π(x+5)1=4πx1.
【解析】
根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.
【详解】
解:设小圆的半径为x米,则大圆的半径为(x+5)米,
根据题意得:π(x+5)1=4πx1,
故答案为π(x+5)1=4πx1.
【点睛】
本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.
18、4.
【解析】
过E作EG⊥AF,交FA的延长线于G,由折叠可得∠EAG=30°,而当AD⊥BC时,AD最短,依据BC=7,△ABC的面积为14,即可得到当AD⊥BC时,AD=4=AE=AF,进而得到△AEF的面积最小值为:AF×EG=×4×2=4.
【详解】
解:如图,过E作EG⊥AF,交FA的延长线于G,
由折叠可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
当AD⊥BC时,AD最短,
∵BC=7,△ABC的面积为14,
∴当AD⊥BC时,
,
即:,
∴.
∴△AEF的面积最小值为:
AF×EG=×4×2=4,
故答案为:4.
【点睛】
本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
20、 (x﹣y)2;2.
【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.
【详解】
原式= x2﹣4y2+4xy(5y2-2xy)÷4xy
=x2﹣4y2+5y2﹣2xy
=x2﹣2xy+y2,
=(x﹣y)2,
当x=2028,y=2时,
原式=(2028﹣2)2=(﹣2)2=2.
【点睛】
本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.
21、(1)x=1 (2) (1)
【解析】
(1)作AM⊥BC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;
(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9−8k,由△ABE∽△CEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;
(1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PC−NC=k,继而表示出EF、EH的长,从而出答案.
【详解】
(1)作AM⊥BC于点M,连接AP,如图1,
∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,
∴BM=4、AM=1,
∴tanB=tanC=,
∵PH⊥DC,
∴设PH=1k,则CH=4k、PC=5k,
∵BC=9,
∴PM=BC−BM−PC=5−5k,
∴AP=AM+PM=9+(5−5k) ,
∵PA=PH,
∴9+(5−5k) =9k,
解得:k=1或k=,
当k= 时,CP=5k= >9,舍去;
∴k=1,
则圆P的半径为1.
(2)如图2,
由(1)知,PH=PE=1k、CH=4k、PC=5k,
∵BC=9,
∴BE=BC−PE−PC=9−8k,
∵△ABE∽△CEH,
∴ ,即 ,
解得:k= ,
则PH= ,即圆P的半径为,
∵圆B与圆P相交,且BE=9−8k= ,
∴
相关试卷
这是一份2021-2022学年山东省枣庄市峄城区八年级上学期期中数学试题及答案,共16页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省枣庄市峄城区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省枣庄市峄城区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。