山西农业大附属中学2022年中考试题猜想数学试卷含解析
展开
这是一份山西农业大附属中学2022年中考试题猜想数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2 B.3 C.5 D.7
2.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )
A. B. C. D.
3.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
4.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. B.
C. D.
6.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()
A.37 B.38 C.50 D.51
7.下列美丽的图案中,不是轴对称图形的是( )
A. B. C. D.
8.的相反数是( )
A. B.2 C. D.
9.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )
A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣4
10.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )
A.1 B.2 C.3 D.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 .
12.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.
13.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则△PMN的周长的最小值为_____________ .
14.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.
15.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.
16.若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|++3|a﹣b|=_____.
三、解答题(共8题,共72分)
17.(8分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为 (填“真”或“假”)命题,并说明理由;
(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.
18.(8分)综合与探究:
如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
(1)求二次函数的表达式;
(2)求点 A,B 的坐标;
(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.
19.(8分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
20.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
21.(8分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)根据图象写出不等式kx+b﹣≤0的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
22.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:
根据统计图所提供的倍息,解答下列问题:
(1)本次抽样调查中的学生人数是多少人;
(2 )补全条形统计图;
(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
23.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,
24.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
2、B
【解析】
试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.
故选B.
3、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
4、A
【解析】
根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
【详解】
∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
∴AB=BD , AC=CD ,
∵AB=AC ,
∴AB=BD=CD=AC ,
∴ 四边形 ABDC 是菱形;
故选A.
【点睛】
本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
5、B
【解析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
6、D
【解析】
试题解析:
第①个图形中有 盆鲜花,
第②个图形中有盆鲜花,
第③个图形中有盆鲜花,
…
第n个图形中的鲜花盆数为
则第⑥个图形中的鲜花盆数为
故选C.
7、A
【解析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选A.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
8、B
【解析】
根据相反数的性质可得结果.
【详解】
因为-2+2=0,所以﹣2的相反数是2,
故选B.
【点睛】
本题考查求相反数,熟记相反数的性质是解题的关键 .
9、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】
14400=1.44×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【解析】
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴,
∴,
∴,
∴S△ABC=4,
∴S△BCD= S△ABC- S△ACD=4-1=1.
故选C
考点:相似三角形的判定与性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
试题分析:设正方形的边长为y,EC=x,
由题意知,AE2=AB2+BE2,
即(x+y)2=y2+(y-x)2,
由于y≠0,
化简得y=4x,
∴sin∠EAB=.
考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义
12、2
【解析】
试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.
∴C△EBF==C△HAE=2.
考点:1折叠问题;2勾股定理;1相似三角形.
13、2
【解析】
过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知△PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,,再根据线段相加勾股定理即可求解.
【详解】
过P作关于AC和AD的对称点,连接和,过P作,
四边形ABCD是菱形,AD是对角线,
,
,
,
,
又由题意得
【点睛】
本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.
14、1.
【解析】
试题解析:连接OE,如下图所示,
则:OE=OA=R,
∵AB是⊙O的直径,弦EF⊥AB,
∴ED=DF=4,
∵OD=OA-AD,
∴OD=R-2,
在Rt△ODE中,由勾股定理可得:
OE2=OD2+ED2,
∴R2=(R-2)2+42,
∴R=1.
考点:1.垂径定理;2.解直角三角形.
15、
【解析】
连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:如图,连接AC、CF、GE,CF和GE相交于O点
∵在菱形ABCD中, ,BC=1,
∴,AC=1,
∴
∵在菱形CEFG中,是它的对角线,
∴,
∴,
∴
∵==,
∴在,
又∵H是AF的中点
∴.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
16、﹣5a+4b﹣3c.
【解析】
直接利用数轴结合二次根式、绝对值的性质化简得出答案.
【详解】
由数轴可得:a+c<0,b-c>0,a-b<0,
故原式=-2(a+c)+b-c-3(a-b)
=-2a-2c+b-c-3a+3b
=-5a+4b-3c.
故答案为-5a+4b-3c.
【点睛】
此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键.
三、解答题(共8题,共72分)
17、(1)真;(2);(3)或或.
【解析】
(1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;
(2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;
(3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.
【详解】
(1)真 .
理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,
则∠MPB=∠MBP>∠ACP,
所以在线段AB上不存在“好点”;
(2)∵P为BA延长线上一个“好点”;
∴∠ACP=∠MBP;
∴△PAC∽△PMB;
∴即;
∵M为PC中点,
∴MP=2;
∴;
∴.
(3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;
∵M为CP中点;
∴MD为△CPA中位线;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM;
∴DM2=DP·DB即4= DP·(5DP);
解得DP=1,DP=4(不在AB边上,舍去;)
∴AP=2
第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;
∵M为CP中点;
∴MD为△CPA中位线;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM
∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
解得DP=1(不在AB延长线上,舍去),DP=4
∴AP=8;
第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;
此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;
第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
∴△PAC∽△PMB;
∴
∴BM垂直平分PC则BC=BP= ;
∴
∴综上所述,或或;
【点睛】
本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.
18、(1);(2);(3).
【解析】
(1)将点代入二次函数解析式即可;
(2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
【详解】
解:(1)∵点在二次函数的图象上,
.
解方程,得
∴二次函数的表达式为.
(2)如图1,过点作轴,垂足为.
.
,
.
在和中,
∵,
.
∵点的坐标为 ,
.
.
(3)如图2,把沿轴正方向平移,
当点落在抛物线上点处时,设点的坐标为.
解方程得:(舍去)或
由平移的性质知,且,
∴四边形为平行四边形,
.
扫过区域的面积== .
【点睛】
本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
19、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
【解析】
试题分析:把点代入抛物线,求出的值即可.
先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
联立方程求出点的坐标, 最大值=,
进而计算四边形EAPD面积的最大值;
分两种情况进行讨论即可.
试题解析:(1)∵在抛物线上,
∴
解得
∴抛物线的解析式为
(2)过点P作轴交AD于点G,
∵
∴直线BE的解析式为
∵AD∥BE,设直线AD的解析式为 代入,可得
∴直线AD的解析式为
设则
则
∴当x=1时,PG的值最大,最大值为2,
由 解得 或
∴
∴ 最大值=
∵AD∥BE,
∴
∴S四边形APDE最大=S△ADP最大+
(3)①如图3﹣1中,当时,作于T.
∵
∴
∴
∴
可得
②如图3﹣2中,当时,
当时,
当时,Q3
综上所述,满足条件点点Q坐标为或或或
20、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
21、 (1) y=﹣x+6;(2) 0<x<2或x>4;(3) 点P的坐标为(2,0)或(﹣3,0).
【解析】
(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;
(2)根据点坐标和图象即可得出结论;
(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.
【详解】
解:(1)∵点和点在反比例函数的图象上,
,
解得,
即
把两点代入中得 ,
解得:,
所以直线的解析式为:;
(2)由图象可得,当时,的解集为或.
(3)由(1)得直线的解析式为,
当时,y=6,
,
,
当时,,
∴点坐标为
.
设P点坐标为,由题可以,点在点左侧,则
由可得
①当时,,
,解得,
故点P坐标为
②当时,,
,解得,
即点P的坐标为
因此,点P的坐标为或时,与相似.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.
22、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
【解析】
(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
【详解】
(1)30÷30%=100,
所以本次抽样调查中的学生人数为100人;
(2)选”舞蹈”的人数为100×10%=10(人),
选“打球”的人数为100﹣30﹣10﹣20=40(人),
补全条形统计图为:
(3)2000×=800,
所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
(4)画树状图为:
共有12种等可能的结果数,其中选到一男一女的结果数为8,
所以选到一男一女的概率=.
【点睛】
本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
23、 (1)证明见解析;(2)AD=;(3)DG=.
【解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
【详解】
(1)如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴,即AD2=AB•AF=xy,
则AD= ;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×=,
∵AF∥OD,
∴,即DG=AD,
∴AD=,
则DG=.
【点睛】
圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
24、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.
【解析】
(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.
(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.
【详解】
(1)设捐款增长率为x,根据题意列方程得:
,
解得x1=0.1,x2=-1.9(不合题意,舍去).
答:捐款增长率为10%.
(2)12100×(1+10%)=13310元.
答:第四天该单位能收到13310元捐款.
相关试卷
这是一份新疆生产建设兵团农八师一四三团第一中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列各式正确的是,若,则等内容,欢迎下载使用。
这是一份山西省长治市市级名校2021-2022学年中考试题猜想数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,|–|的倒数是,方程的解是等内容,欢迎下载使用。
这是一份山西省重点中学2022年中考试题猜想数学试卷含解析,共26页。