2022年09月中考数学多边形压轴题训练
展开
这是一份2022年09月中考数学多边形压轴题训练,共53页。试卷主要包含了已知等内容,欢迎下载使用。
2022年09月多边形压轴题训练
一.选择题(共10小题)
1.(2022春•龙岗区校级期末)已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为;
③EB⊥ED;
④S△APD+S△APB=+.
其中正确结论的序号是( )
A.①③④ B.①②③ C.②③④ D.①②④
2.(2022春•龙岗区校级月考)如图,在正方形ABCD中,E为AD的中点,DF⊥CE于M,交AC于点N,交AB于点F,连接EN、BM.有如下结论:①△ADF≌△DCE;②MN=FN;③CN=2AN;④S△ADN:S四边形CNFB=2:5;⑤∠ADF=∠BMF.其中正确结论的个数为( )
A.2个 B.3个 C.4个 D.5个
3.(2020秋•龙华区校级期中)如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的个数是( )
A.5个 B.4个 C.3个 D.2个
4.(2011•深圳模拟)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )
A. B. C. D.
5.(2020春•福田区校级月考)如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
6.(2020•龙岗区校级模拟)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
7.(2020春•南山区校级期中)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为;
③EB⊥ED;
④S△APD+S△APB=1+;
⑤S正方形ABCD=4+.
其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
8.(2021秋•龙岗区校级月考)如图,在正方形ABCD中,N是DC上的点,且=,M是AD上异于D的点,且∠NMB=∠MBC,则=( )
A. B. C. D.
9.(2009•深圳)如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )
A.3 B.5 C. D.
10.(2017春•龙岗区校级月考)如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是( )
A.②④ B.①③ C.②③④ D.①③④
二.填空题(共15小题)
11.(2020秋•龙岗区校级期中)如图,等边△EFG的顶点分别在矩形ABCD的边AD、AB、CD上,若AE=1,DE=4,则DG的值为 .
12.(2018•福田区校级开学)已知如图,正方形ABCD的边长为4,取AB边上的中点E,连接CE,过点B作BF⊥CE于点F,连接DF.过点A作AH⊥DF于点H,交CE于点M,交BC于点N,则MN= .
13.(2016春•深圳校级期中)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是 .
14.(2021春•福田区校级期末)如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为 .
15.(2021•深圳模拟)如图,P为正方形ABCD的边BC的中点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,若正方形的边长为2,则CE= .
16.(2020•宝安区校级开学)如图,以△ABC的边AB、AC为边往外作正方形ABEF与正方形ACGD,连接BD、CF、DF,若AB=2,AC=4,则BC2+DF2的值为 .
17.(2021•龙岗区模拟)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为 .
18.(2016•宝安区二模)如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是 .
19.(2019秋•罗湖区校级月考)小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD内作等边△BCE,并与正方形的对角线交于F、G点,制成了图中阴影部分的标志,则这个标志AFEGD的面积是 .
20.(2012•深圳二模)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.
其中正确结论的序号是 .
21.(2021秋•深圳期中)如图,四边形ABCD是矩形,边AB长为6,∠ABD=60°,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为 .
22.(2016春•深圳校级期中)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.
其中正确的序号是 (把你认为正确的都填上).
23.(2015•深圳模拟)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为 .
24.(2021秋•宝安区校级期中)Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 .
25.(2012•深圳模拟)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN= .
三.解答题(共3小题)
26.(2019春•罗湖区校级月考)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
(2)如图2,若DA=DE,求证:BF+DF=AF.
27.(2022春•龙岗区校级期末)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.
28.(2014春•龙岗区校级期中)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=,求EB的长.
2022年09月多边形压轴题训练
参考答案与试题解析
一.选择题(共10小题)
1.(2022春•龙岗区校级期末)已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为;
③EB⊥ED;
④S△APD+S△APB=+.
其中正确结论的序号是( )
A.①③④ B.①②③ C.②③④ D.①②④
【分析】根据正方形的性质可得AB=AD,再根据同角的余角相等求出∠BAE=∠DAP,然后利用“边角边”证明△APD和△AEB全等,从而判定①正确,根据全等三角形对应角相等可得∠AEB=∠APD=135°,然后求出∠BEP=90°,判定③正确,根据等腰直角三角形的性质求出PE,再利用勾股定理列式求出BE的长,然后根据S△APD+S△APB=S△APE+S△BPE列式计算即可判断出④正确;过点B作BF⊥AE交AE的延长线于F,先求出∠BEF=45°,从而判断出△BEF是等腰直角三角形,再根据等腰直角三角形的性质求出BF的长为,判断出②错误.
【解答】解:在正方形ABCD中,AB=AD,
∵AP⊥AE,
∴∠BAE+∠BAP=90°,
又∵∠DAP+∠BAP=∠BAD=90°,
∴∠BAE=∠DAP,
在△APD和△AEB中,
,
∴△APD≌△AEB(SAS),故①正确;
∵AE=AP,AP⊥AE,
∴△AEP是等腰直角三角形,
∴∠AEP=∠APE=45°,
∴∠AEB=∠APD=180°﹣45°=135°,
∴∠BEP=135°﹣45°=90°,
∴EB⊥ED,故③正确;
∵AE=AP=1,
∴PE=AE=,
在Rt△PBE中,BE===2,
∴S△APD+S△APB=S△APE+S△BPE,
=×1×1+××2,
=0.5+,故④正确;
过点B作BF⊥AE交AE的延长线于F,
∵∠BEF=180°﹣135°=45°,
∴△BEF是等腰直角三角形,
∴BF=×2=,
即点B到直线AE的距离为,故②错误,
综上所述,正确的结论有①③④.
故选:A.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.
2.(2022春•龙岗区校级月考)如图,在正方形ABCD中,E为AD的中点,DF⊥CE于M,交AC于点N,交AB于点F,连接EN、BM.有如下结论:①△ADF≌△DCE;②MN=FN;③CN=2AN;④S△ADN:S四边形CNFB=2:5;⑤∠ADF=∠BMF.其中正确结论的个数为( )
A.2个 B.3个 C.4个 D.5个
【分析】①本题需先根据已知条件,得出△ADF与△DCE全等,即可得出结果.
②本题需先根据AE=AF,∠NAF=∠NAE,AN=AN这三个条件,得出△ANF≌△ANE,即可得出结论.
③本题需先根据AF∥CD,得出CN与AN的比值,即可求出结果.
④本题需先连接CF,再设S△ANF=1,即可得出S△ADN与S四边形CNFB的比值即可.
⑤在△DEN和△MFB中,根据已知条件,得出△DEN与△MFB全等,即可得出结果.
【解答】解:①∵ABCD是正方形,
∴AD=DC,∠DAF=∠EDC,
∵DF⊥CE,
∴∠EDM+∠DEM=90°,
∵∠DEM+∠DCE=90°,
∴∠ADF=∠DCE,
在△ADF和△DCE中,
,
∴△ADF≌△DCE,
故本选项正确;
②∵△ADF≌△DCE,
∴DE=AF,
∵AE=DE,
∴AE=AF,
在△ANF和△ANE中
,
∴△ANF≌△ANE,
∴NF=NE,
∵NM⊥CE,
∴NE>MN,
∴NF>MN,
∴MN=FN错误,
故本选项错误;
③∵AF∥CD,
∴∠CDN=∠NFA,∠DCN=∠NAF,
∴△DCN∽△FAN,
又∵△ADF≌△DCE,且四边形ABCD为正方形,
∴AF=AB=DC,
∴,
∴CN=2AN,
故本选项正确;
④连接CF,
设S△ANF=1,
则S△ACF=3,S△ADN=2,
∴S△ACB=6,
∴S四边形CNFB=5,
∴S△ADN:S四边形CNFB=2:5,
故本选项正确;
⑤延长DF与CB交于G,则∠ADF=∠G,
根据②的结论F为AB中点,即AF=BF,
在△DAF与△GBF中,
,
∴△DAF≌△GBF(AAS),
∴BG=AD,又AD=BC,
∴BC=BG,
又∵∠ADF=∠DCE,∠ADF+∠CDM=90°,
∴∠DCE+∠CDM=90°,
∴∠DMC=∠CMG=90°,
∴△CMG是直角三角形,
∴MB=BG=BC(直角三角形斜边上的中线等于斜边的一半),
∴∠G=∠BMF,
因此∠ADF=∠BMF,故选项正确.
所以正确的有①③④⑤共4个.
故选:C.
【点评】本题主要考查了正方形的性质问题,在解题时要注意全等三角形、相似等知识的综合利用,在做题时要结合图形是解题的关键.
3.(2020秋•龙华区校级期中)如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的个数是( )
A.5个 B.4个 C.3个 D.2个
【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得===2,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.
【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,
∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴===2,
∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF===a,
∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴=,
即=,
解得AM=a,
∴MF=AF﹣AM=a﹣a=a,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则==,
即==,
解得MN=a,AN=a,
∴NB=AB﹣AN=2a﹣a=a,
根据勾股定理,BM===a,
过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a﹣a=a,MK=a﹣a=a,
在Rt△MKO中,MO===a,
根据正方形的性质,BO=2a×=a,
∵BM2+MO2=(a)2+(a)2=2a2,
BO2=(a)2=2a2,
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.
故选:B.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.
4.(2011•深圳模拟)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )
A. B. C. D.
【分析】根据已知条件,可得出△AEP∽△ADC;△BFP∽△DAB,从而可得出PE,PF的关系式,然后整理即可解答本题.也可以利用面积法证明PE+PF=BM即可.
【解答】解:方法一:设AP=x,PB=3﹣x.
∵∠EAP=∠EAP,∠AEP=∠ABC;
∴△AEP∽△ABC,故 =①;
同理可得△BFP∽△DAB,故=②.
①+②得 =,
∴PE+PF=.
方法二:(面积法)
如图,作BM⊥AC于M,则BM==,
∵S△AOB=S△AOP+S△POB,
∴•AO•BM=•AO•PE+•OB•PF,
∵OA=OB,
∴PE+PF=BM=.
故选:B.
【点评】本题考查了矩形的性质,比较简单,根据矩形的性质及相似三角形的性质解答即可,学会利用面积法证明线段之间的关系.
5.(2020春•福田区校级月考)如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.
【解答】解:在菱形ABCD中,
∵AB=BD,
∴AB=BD=AD,
∴△ABD是等边三角形,
∴根据菱形的性质可得∠BDF=∠C=60°,
∵BE=CF,
∴BC﹣BE=CD﹣CF,
即CE=DF,
在△BDF和△DCE中,,
∴△BDF≌△DCE(SAS),故①小题正确;
∴∠DBF=∠EDC,
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,
∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小题正确;
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,
∴∠DEB=∠ABM,
又∵AD∥BC,
∴∠ADH=∠DEB,
∴∠ADH=∠ABM,
在△ABM和△ADH中,,
∴△ABM≌△ADH(SAS),
∴AH=AM,∠BAM=∠DAH,
∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,
∴△AMH是等边三角形,故③小题正确;
∵△ABM≌△ADH,
∴△AMH的面积等于四边形ABMD的面积,
又∵△AMH的面积=AM•AM=AM2,
∴S四边形ABMD=AM2,故④小题正确,
综上所述,正确的是①②③④共4个.
故选:D.
【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.
6.(2020•龙岗区校级模拟)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【分析】先判断出△ABD、BDC是等边三角形,然后根据等边三角形的三心(重心、内心、垂心)合一的性质,结合菱形对角线平分一组对角,三角形的判定定理可分别进行各项的判断.
【解答】解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;
②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;
③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;
④S△ABD=AB•DE=AB•BE=AB•AB=AB2,即④正确.
综上可得①②④正确,共3个.
故选:C.
【点评】此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.
7.(2020春•南山区校级期中)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为;
③EB⊥ED;
④S△APD+S△APB=1+;
⑤S正方形ABCD=4+.
其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
【分析】①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积;④连接BD,求出△ABD的面积,然后减去△BDP的面积即可.
【解答】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB(故①正确);
③∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED(故③正确);
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE===,
∴BF=EF=(故②不正确);
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=,
又∵PB=,
∴BE=,
∵△APD≌△AEB,
∴PD=BE=,
∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.(故④不正确).
⑤∵EF=BF=,AE=1,
∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+,
∴S正方形ABCD=AB2=4+(故⑤正确);
故选:D.
【点评】本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识.
8.(2021秋•龙岗区校级月考)如图,在正方形ABCD中,N是DC上的点,且=,M是AD上异于D的点,且∠NMB=∠MBC,则=( )
A. B. C. D.
【分析】从点B处作BF⊥MN交MN于点F,根据题意可设DN=3a,NC=4a,则CD=7a,首先证明△BFM≌△BAM推出AM=MF设AM=x,再证明△BCN≌△BFN,推出CN=NF,在Rt△DMN中利用勾股定理列出方程即可解决问题.
【解答】解:从点B处作BF⊥MN交MN于点F,
∵四边形ABCD是正方形,
∴AB=CD=AD,AD∥BC,∠A=∠C=∠D=90°,
∴∠AMB=∠MBC,
∵∠NMB=∠MBC,
∴∠BMA=∠BMF,
∵BA⊥MA,BF⊥MN,
∴AB=BF,
在Rt△BMA和Rt△BMF中,
,
∴Rt△BMA≌Rt△BMF,
∴AM=MF,
同理可证△BCN≌△BFN,
∴CN=NF,
设DN=3a,NC=4a,则CD=7a,则NF=4a,设AM=MF=x,
在Rt△DMN中,∵MN2=DM2+DN2
(3a)2+(7a﹣x)2=(4a+x)2,
解得x=a,
∴AM=a,∵AB=CD=7a,
∴AM:AB=3:11;
故选:A.
【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.
9.(2009•深圳)如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )
A.3 B.5 C. D.
【分析】根据∠EDC:∠EDA=1:3,可得∠EDC=22.5°,∠EDA=67.5°,再由AC=10,求得DE.
【解答】解:∵四边形ABCD是矩形,
∴∠ADC=90°,AC=BD=10,OA=OC=AC=5,OB=OD=BD=5,
∴OC=OD,
∴∠ODC=∠OCD,
∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,
∴∠EDC=22.5°,∠EDA=67.5°,
∵DE⊥AC,
∴∠DEC=90°,
∴∠DCE=90°﹣∠EDC=67.5°,
∴∠ODC=∠OCD=67.5°,
∴∠ODC+∠OCD+∠DOC=180°,
∴∠COD=45°,
∴OE=DE,
∵OE2+DE2=OD2,
∴2DE2=OD2=25,
∴DE=,
故选:D.
【点评】本题主要考查了勾股定理和矩形的性质,是一道中等题.
10.(2017春•龙岗区校级月考)如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是( )
A.②④ B.①③ C.②③④ D.①③④
【分析】根据已知先判断△ABC≌△EFA,再得出EF⊥AC,从而得到答案.
【解答】解:∵△ACE是等边三角形
∴∠EAC=60°,AE=AC
∵∠BAC=30°
∴∠FAE=∠ACB=90°,AB=2BC
∵F为AB的中点
∴AB=2AF
∴BC=AF
∴△ABC≌△EFA
∴∠AEF=∠BAC=30°
∴①EF⊥AC(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的)
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS).
故选:D.
【点评】解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.
二.填空题(共15小题)
11.(2020秋•龙岗区校级期中)如图,等边△EFG的顶点分别在矩形ABCD的边AD、AB、CD上,若AE=1,DE=4,则DG的值为 2 .
【分析】作∠AFM=30°,∠NGD=30°,可得△NEG≌△MFE,进一步求得结果.
【解答】解:方法(一)如图1,
作∠AFM=30°交DA于M,作∠DGN=30°交AD于N,
∵四边形ABCD是矩形,
∴∠MAF=∠GDN=90°,
∴∠M=∠N=60°,
∴∠MEF+∠MFE=120°,
∵△EFG是等边三角形,
∴∠FEG=60°,EF=EG,
∴∠GEN+∠MEF=120°,
∴∠MFE=∠NEG,
∴△NEG≌△MFE(AAS),
∴MF=EN,NG=EM,
设DG=x,
∴DN=DG•tan∠DGN=x,
NG==x,
∴EN=ED+DN=4+x,
∴MF=4+x,
AM=EM﹣AE=NG﹣AE=x﹣1,
在Rt△AMF中,
MF=2AM,
∴4+x=2•(x﹣1),
∴x=2,
方法(2)如图,
作∠DGH=60°,截取GH=DG,连接HF,
∵△EFG是等边三角形,
∴∠EGF=60°,EG=FG,
∴∠DGE=∠FGH,
∴△EDG≌△FHG(SAS),
∴FH=DE=4,
设GH=DG=a,
∴HV=,
在Rt△FRH中,∠RHF=60°,HF=4,
∴RH=4×=2,
∴HV=RV=RH=5﹣2=3,
∴,
∴a=2,
故答案是2.
【点评】本题考查了等边三角形的性质,全等三角形的判定和性质,直角三角形性质等知识,解决问题的关键是作辅助线,构造三角形全等.
12.(2018•福田区校级开学)已知如图,正方形ABCD的边长为4,取AB边上的中点E,连接CE,过点B作BF⊥CE于点F,连接DF.过点A作AH⊥DF于点H,交CE于点M,交BC于点N,则MN= 1 .
【分析】如图,延长DF交AB于P.首先证明EF:CF=1:4,由△ADP≌△BAN,推出BN=AP,DP=AN,由PE∥DC,推出PE:DC=EF:CF=1:4,推出PE=BP=1,再证明∠NCM=∠NMC即可解决问题;
【解答】解:如图,延长DF交AB于P.
∵四边形ABCD是正方形,
∴AD=AB,∠ABN=∠DAP=90°,
∵AN⊥DP,
∴∠APD+∠PAH=90°,∠ANB+∠PAH=90°,
∴∠APD=∠ANB,
∴△ADP≌△BAN,
∴AN=DP,
∵BF⊥EC,
∴∠EBF+∠BEF=90°,∠BCE+∠BEC=90°,
∴∠EBF=∠BCE,
∴tan∠EBF=tan∠BCE=,
∵AB=BC,BE=AE,
∴tan∠EBF=tan∠BCE=,设EF=a,则BF=2a,CF=4a,
∵PE∥DC,
∴==,
∵CD=4,
∴PE=1,
∵BE=2,
∴PE=PB=1,
∴PF=BE=1,AP=3,
在Rt△ADP中,DP==5,
∴DF=4,BN=AP=3,CN=1,
∴DC=DF,
∴∠DFC=∠DCF,
∵∠BCE+∠DCF=90°,∠FMH+∠DFC=90°,∠FMH=∠NMC,
∴∠NCM=∠NMC,
∴MN=CN=1.
故答案为1.
【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题掌握的压轴题.
13.(2016春•深圳校级期中)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是 ﹣1 .
【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.
【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
过点M作MF⊥DC于点F,
∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
∴2MD=AD=CD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD=MD=,
∴FM=DM×cos30°=,
∴MC==,
∴A′C=MC﹣MA′=﹣1.
故答案为:﹣1.
【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.
14.(2021春•福田区校级期末)如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为 5 .
【分析】连接AO,根据矩形对角线相等且互相平分得:OC=OD,再证明△ACO≌△ADO,则∠OAB=30°;点O一定在∠CAB的平分线上运动,根据垂线段最短得:当OB⊥AO时,OB的长最小,根据直角三角形30°角所对的直角边是斜边的一半得出结论.
【解答】解:连接AO,
∵四边形CDGH是矩形,
∴CG=DH,OC=CG,OD=DH,
∴OC=OD,
∵△ACD是等边三角形,
∴AC=AD,∠CAD=60°,
在△ACO和△ADO中,
,
∴△ACO≌△ADO(SSS),
∴∠OAB=∠CAO=30°,
∴点O一定在∠CAB的平分线上运动,
∴当OB⊥AO时,OB的长度最小,
∵∠OAB=30°,∠AOB=90°,
∴OB=AB=×10=5,
即OB的最小值为5.
故答案为:5.
【点评】本题考查了矩形的性质、全等三角形的性质和判定、含30°角的直角三角形的性质,熟练掌握直角三角形中,30°角所对的直角边等于斜边的一半,利用了矩形对角线相等且平分的性质得对角线的一半相等,为三角形全等用铺垫;另外还利用了垂线段最短解决了求最值问题.
15.(2021•深圳模拟)如图,P为正方形ABCD的边BC的中点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,若正方形的边长为2,则CE= .
【分析】过C作CH⊥AE于H,先证得△BGP≌△CHP,得到BG=CH,∠GBP=∠PCH,继而证得∠HCE=∠HEC,得到△CEH是等腰直角三角形,可得CE=BG,再根据三角形的面积公式求出BG即可.
【解答】解:如图,过C作CH⊥AE于H,
∵AG=GE,
∴AB=BE,
∴∠BAE=BEA,
∵BG⊥AE,
∴∠BGP=∠CHP=90°,
∵P为BC的中点,
∴BP=CP,
在△BGP和△CHP中,
,
∴△BGP≌△CHP(AAS),
∴BG=CH,∠GBP=∠PCH,
∵四边形ABCD是正方形,
∴AB=BC,
∴BC=BE,
∴∠BCE=∠BEC,
∵∠ABC=∠ABG+∠GBP=90°,∠ABG+∠BAG=90°,
∴∠GBP=∠BAG,
∴∠PCH=∠BEP,
∴∠HCE=∠HEC,
∴CH=EH,
∵∠CHE=90°,
∴CE=CH,即CE=BG,
在Rt△ABP中,AB=2,BP=BC=1,
∴AP==,
∵S△ABP=AB•BP=AP•BG,
∴BG==,
∴CE=×=,
故答案为.
【点评】本题主要考查了正方形的性质,全等三角形的性质和判定,勾股定理,三角形的面积公式,证得CE=BG是解决问题的关键.
16.(2020•宝安区校级开学)如图,以△ABC的边AB、AC为边往外作正方形ABEF与正方形ACGD,连接BD、CF、DF,若AB=2,AC=4,则BC2+DF2的值为 40 .
【分析】先判定△BAD≌△FAC,即可得出∠ACF=∠ADB,进而得到CF⊥BD,再根据勾股定理即可得到BC2+DF2=OD2+OF2+OB2+OC2=BF2+DC2,依据AB=2,AC=4,即可得到BC2+DF2的值.
【解答】解:如图所示,连接BF,CD,
∵四边形ABEF,四边形ACGD都是正方形,
∴AB=AF,AC=AD,∠BAF=∠CAD=90°,
∴∠BAD=∠FAC,
∴△BAD≌△FAC(SAS),
∴∠ACF=∠ADB,
又∵∠AHC=∠OHD,
∴∠CAH=∠DOH=90°,
∴CF⊥BD,
∴BC2=OB2+OC2,DF2=OD2+OF2,BF2=OB2+OF2,DC2=OD2+OC2,
∴BC2+DF2=OD2+OF2+OB2+OC2,
BF2+DC2=OD2+OF2+OB2+OC2,
即BC2+DF2=BF2+DC2,
又∵△ABF和△ACD都是等腰直角三角形,且AB=2,AC=4,
∴BF2+DC2=8+32=40,
∴BC2+DF2=40,
故答案为:40.
【点评】本题主要考查了正方形的性质,全等三角形的判定与性质以及勾股定理的运用,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决问题的关键是作辅助线构造直角三角形,利用勾股定理进行计算.
17.(2021•龙岗区模拟)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为 8 .
【分析】过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.由AB=AC=5,BC=4,得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.
【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.
∵AB=AC=5,BC=4,
∴BM=CM=2,
∴△AMB∽△CGB,
∴,
即
∴GB=8,
设BD=x,则DG=8﹣x,
∵ED=DC,∠EHD=∠DGC,∠HED=∠GDC,
∴△EDH≌△DCG(AAS),
∴EH=DG=8﹣x,
∴S△BDE===,
当x=4时,△BDE面积的最大值为8.
故答案为8.
【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.
18.(2016•宝安区二模)如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是 2﹣2 .
【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.
【解答】解:如图所示:
∵在N的运动过程中A′在以M为圆心,MA的长为半径的圆上,
∴MA′是定值,A′C长度取最小值时,即A′在MC上时,
过点M作MF⊥DC于点F,
∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,
∴MD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD=MD=1,
∴FM=DM×cos30°=,
∴MC==2,
∴A′C=MC﹣MA′=2﹣2.
故答案为:2﹣2.
【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.
19.(2019秋•罗湖区校级月考)小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD内作等边△BCE,并与正方形的对角线交于F、G点,制成了图中阴影部分的标志,则这个标志AFEGD的面积是 .
【分析】首先过点G作GN⊥CD于N,过点F作FM⊥AB于M,由在边长为2的正方形ABCD内作等边△BCE,即可求得△BEC与正方形ABCD的面积,由直角三角形的性质,即可求得GN的长,即可求得△CDG的面积,同理即可求得△ABF的面积,又由S阴影=S正方形ABCD﹣S△ABF﹣S△BCE﹣S△CDG,即可求得阴影图形的面积.
【解答】解:过点G作GN⊥CD于N,过点F作FM⊥AB于M,
∵在边长为2的正方形ABCD内作等边△BCE,
∴AB=BC=CD=AD=BE=EC=2,∠ECB=60°,∠ODC=45°,
∴S△BEC=×2×=,S正方形=AB2=4,
设GN=x,
∵∠NDG=∠NGD=45°,∠NCG=30°,
∴DN=NG=x,CN=NG=x,
∴x+x=2,
解得:x=﹣1,
∴S△CGD=CD•GN=×2×(﹣1)=﹣1,
同理:S△ABF=﹣1,
∴S阴影=S正方形ABCD﹣S△ABF﹣S△BCE﹣S△CDG=4﹣(﹣1)﹣﹣(﹣1)=6﹣3.
故答案为:6﹣3.
【点评】此题考查了正方形,等边三角形,以及直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意方程思想与数形结合思想的应用.
20.(2012•深圳二模)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.
其中正确结论的序号是 ①③⑤ .
【分析】①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
【解答】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此选项成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE===,
∴BF=EF=,
故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=,
又∵PB=,
∴BE=,
∵△APD≌△AEB,
∴PD=BE=,
∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.
故此选项不正确.
⑤∵EF=BF=,AE=1,
∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+,
∴S正方形ABCD=AB2=4+,
故此选项正确.
故答案为:①③⑤.
【点评】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
21.(2021秋•深圳期中)如图,四边形ABCD是矩形,边AB长为6,∠ABD=60°,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为 .
【分析】连接CG,取CG的中点P,连接PM,PN,利用勾股定理求出EG=4,运用三角形中位线定理得出PM∥CD,PM=CD=3,PN∥EF,PN=EG=2,运用平行线性质证明∠MPN=90°,再运用勾股定理即可求得答案.
【解答】解:如图,连接CG,取CG的中点P,连接PM,PN,
∵四边形ABCD是矩形,
∴∠A=∠BCD=90°,CD=AB=6,
∵EF∥BC,
∴∠BEG=∠A=90°,
∵∠ABD=60°,
∴∠BGE=90°﹣∠ABD=90°﹣60°=30°,
∴BG=2BE=2×4=8,
∴EG===4,
∵M、P、N分别是DG、CG、CE的中点,
∴PM∥CD,PM=CD=3,PN∥EF,PN=EG=2,
∴∠MPG=∠DCG,
∵PN∥EF,EF∥BC,
∴PN∥BC,
∴∠NPG=∠BCG,
∴∠MPG+∠NPG=∠DCG+∠BCG=∠BCD=90°,
∴∠MPN=90°,
∴MN===,
故答案为:.
【点评】本题考查了矩形性质和判定,勾股定理,三角形中位线定理,熟练掌握勾股定理和三角形中位线定理,正确添加辅助线是解题关键.
22.(2016春•深圳校级期中)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.
其中正确的序号是 ①②④ (把你认为正确的都填上).
【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.
【解答】解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC﹣BE=CD﹣DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=,
设正方形的边长为a,
在Rt△ADF中,
AD2+DF2=AF2,即a2+(a﹣)2=4,
解得a=,
则a2=2+,
S正方形ABCD=2+,
④说法正确,
故答案为:①②④.
【点评】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.
23.(2015•深圳模拟)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为 20 .
【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
【解答】解:∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴BD=DF=AC,
∴四边形BGFD是菱形,
设GF=x,则AF=13﹣x,AC=2x,
∵在Rt△ACF中,∠CFA=90°,
∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,
解得:x=5,
故四边形BDFG的周长=4GF=20.
故答案为:20.
【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.
24.(2021秋•宝安区校级期中)Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 .
【分析】AM=EF=AP,所以当AP最小时,AM最小,根据垂线段最短解答.
【解答】解:由题意知,四边形AFPE是矩形,
∵点M是矩形对角线EF的中点,则延长AM应过点P,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AM有最小值,
此时AM=AP,由勾股定理知BC==5,
∵S△ABC=AB•AC=BC•AP,
∴AP==,
∴AM=AP=.
【点评】本题利用了矩形的性质、勾股定理、垂线段最短求解.
25.(2012•深圳模拟)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN= .
【分析】连接BP,作EF⊥BC于点F,由正方形的性质可知△BEF为等腰直角三角形,BE=1,可求EF,利用面积法得S△BPE+S△BPC=S△BEC,将面积公式代入即可.
【解答】解:连接BP,作EF⊥BC于点F,则∠EFB=90°,
由正方形的性质可知∠EBF=45°,
∴△BEF为等腰直角三角形,
又根据正方形的边长为1,得到BE=BC=1,
在直角三角形BEF中,sin∠EBF=,
即BF=EF=BEsin45°=1×=,
又PM⊥BD,PN⊥BC,
∴S△BPE+S△BPC=S△BEC,
即BE×PM+×BC×PN=BC×EF,
∵BE=BC,
PM+PN=EF=;
故答案为:.
【点评】解决本题的关键是作出辅助线,构造矩形和全等三角形,把所求的线段转移到正方形的对角线上.
三.解答题(共3小题)
26.(2019春•罗湖区校级月考)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
(2)如图2,若DA=DE,求证:BF+DF=AF.
【分析】(1)设BM=x,则MC=2x,由此得到AB=BC=3x,在Rt△ABM中,根据直角三角形斜边上的中线等于斜边的一半,可求AM长,再利用勾股定理可求AB长;
(2)要证明的三条线段没有组成一个三角形或一条线段,所以延长FD交过点A作垂直于AF的直线于H点,证明△ABF≌△ADH,把BF转化到DH,从而三条线段放在了等腰直角三角形中便解决了问题.
【解答】解:(1)设BM=x,则CM=2x,BC=3x,
∵BA=BC,∴BA=3x.
在Rt△ABM中,E为斜边AM中点,
∴AM=2BE=2.
由勾股定理可得AM2=MB2+AB2,
即40=x2+9x2,解得x=2.
∴AB=3x=6.
(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.
∵DF平分∠CDE,
∴∠1=∠2.
∵DE=DA,DP⊥AF
∴∠3=∠4.
∵∠1+∠2+∠3+∠4=90°,
∴∠2+∠3=45°.
∴∠DFP=90°﹣45°=45°.
∴AH=AF.
∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
∴∠BAF=∠DAH.
又AB=AD,
∴△ABF≌△ADH(SAS).
∴AF=AH,BF=DH.
∵Rt△FAH是等腰直角三角形,
∴HF=AF.
∵HF=DH+DF=BF+DF,
∴BF+DF=AF.
【点评】本题主要考查了正方形的性质、全等三角形的判定和性质以及等腰三角形的性质、勾股定理,综合性较强,正确作出辅助线,把三条线段转化到一个等腰直角三角形是解题的关键.
27.(2022春•龙岗区校级期末)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.
【分析】探究:△ADE和△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;
拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.
【解答】解:
探究:△ADE和△DBF全等.
∵四边形ABCD是菱形,
∴AB=AD.
∵AB=BD,
∴AB=AD=BD.
∴△ABD为等边三角形.
∴∠DAB=∠ADB=60°.
∴∠EAD=∠FDB=120°.
∵AE=DF,
∴△ADE≌△DBF;
拓展:
∵点O在AD的垂直平分线上,
∴OA=OD.
∴∠DAO=∠ADB=50°.
∴∠EAD=∠FDB.
∵AE=DF,AD=DB,
∴△ADE≌△DBF.
∴∠DEA=∠AFB=32°.
∴∠EDA=18°.
【点评】本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质,题目综合性很强,但难度不大.
28.(2014春•龙岗区校级期中)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=,求EB的长.
【分析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB,从而△GAD≌△EAB,即EB=GD;
(2)EB⊥GD,由(1)得∠ADG=∠ABE,则在△BDH中,∠DHB=90°所以EB⊥GD;
(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.
【解答】解:(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
∴∠GAD=∠EAB,
∵四边形EFGA和四边形ABCD是正方形,
∴AG=AE,AB=AD,∠DAB=90°,
在△GAD和△EAB中
,
∴△GAD≌△EAB(SAS),
∴EB=GD;
(2)解:EB⊥GD.
理由如下:如图1,AD,BE的交点记作点M,
∵四边形ABCD是正方形,
∴∠DAB=90°,
∴∠AMB+∠ABM=90°,
又∵△AEB≌△AGD,
∴∠GDA=∠EBA,
∵∠HMD=∠AMB(对顶角相等),
∴∠HDM+∠DMH=∠AMB+∠ABM=90°,
∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,
∴EB⊥GD.
(3)解:如图2,连接AC、BD,BD与AC交于点O,
∵四边形ABCD是正方形,OA=OB,
∴BD⊥CG,
∵AB=AD=2,
在Rt△ABD中,DB=,
OD=DB=
在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,
OA=,
连接AF,
∵∠FAG=∠CAB=45°,
∴A、G、C三点共线,
即OG=OA+AG=+=2,
∴EB=GD=.
【点评】本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/9/22 21:00:24;用户:17512081352;邮箱:17512081352;学号:29417169
相关试卷
这是一份压轴题29填空压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题29填空压轴题几何篇-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题29填空压轴题几何篇-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
这是一份压轴题28填空压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题28填空压轴题函数篇-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题28填空压轴题函数篇-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。
这是一份压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题27选择压轴题几何篇-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题27选择压轴题几何篇-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。