2021学年第27章 反比例函数27.3 反比例函数的应用优秀复习练习题
展开2022-2023年冀教版数学九年级上册27.3
《反比例函数的应用》课时练习
一 、选择题
1.一个菱形的两条对角线长分别为x,y,其面积为2,则y与x之间的关系用图象表示大致为( )
2.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图象大致是( )
3.某厂现有500吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是( )
A. B. C.y=500x(x≥0) D.y=500x(x>0)
4.现有一水塔,内装水20 m3,若匀速放水x m3/h,则需要y h才能把水放完,那么表示y与x之间函数关系的图象是( )
5.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图像,则用电阻R表示电流I的函数解析式为( )
A. B. C. D.
6.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( )
7.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg/m3)与体积V(单位:m3)满足函数关系式p=kV-1(k为常数,k≠0),其图像如图所示,则k的值为( )
A.9 B.-9 C.4 D.-4
8.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,若以此蓄电池为电源的用电器限制电流不得超过10 A,则此用电器的可变电阻应( )
A.不小于4.8 Ω B.不大于4.8 Ω
C.不小于14 Ω D.不大于14 Ω
9.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10 ℃,加热到100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50 ℃的水,则接通电源的时间可以是当天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
10.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )
A.36 B.12 C.6 D.3
二 、填空题
11.一辆汽车行驶在一段全程为100千米的高速公路上,那么这辆汽车行完全程所需的时间y(小时)与它的速度x(千米/小时)之间的关系式为y=________.
12.某家庭用购电卡购买了2 000度电,若此家庭平均每天的用电量为x(单位:度),这2 000度电能够使用的天数为y(单位:天),则y与x的函数解析式为y= .
13.甲、乙两地相距100km,如果一辆汽车从甲地到乙地所用时间为x(h),汽车行驶的平均速度为y(km/h),那么y与x之间的函数关系式为 (不要求写出自变量的取值范围).
14.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图像如图所示,则y与x的函数关系式为_______.
15.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为 .
16.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(分)的函数关系如图所示.已知药物燃烧阶段,y与x成正比例,燃烧完后,y与x成反比例.现测得药物10分钟燃烧完,此时教室内每立方米空气的含药量为8 mg.当每立方米空气中的含药量低于1.6 mg时,对人体才能无毒害作用.那么从消毒开始,经过________分钟后教室内的空气才能达到安全要求.
三 、解答题
17.如图所示,墙MN长为12 m,要利用这面墙围一个矩形小院,面积为60 m2,现有建材能建围墙总长至多26 m,设AB=x m,BC=y m.
(1)写出y与x之间的函数解析式;
(2)要求x和y都取整数,且小院的长宽比尽可能的小,x应取何值?
18.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8 min时,材料温度降为600℃,煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x( min)成反比例关系(如图),已知该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?
19.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
(3)求弹珠离开轨道时的速度.
20.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的匾数图像,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?
参考答案
1.C.
2.C.
3.A
4.C.
5.C
6.A
7.A
8.A
9.A
10.D
11.答案为:.
12.答案为:.
13.答案为:.
14.答案为:y=.
15.答案为:﹣6.
16.答案为:50
17.解:(1)y=.
(2)∵y=,x,y都是整数,且2x+y≤26,0<y≤12.
∴+y≤26,且0<y≤12.
∴y的值只能取6,10,12,对应的x的值依次是10,6,5.
则符合条件的建设方案只有BC=6 cm,AB=10 cm;
BC=10 cm,AB=6 cm;BC=12 cm,DC=5 cm.
∵<<,∴x=10.
18.解:(1)y=128x+32(0≤x≤6) ;
(2)4分钟
19.解:(1)v=at2的图象经过点(1,2),∴a=2.
∴二次函数的解析式为:v=2t2,(0≤t≤2);
设反比例函数的解析式为v=,
由题意知,图象经过点(2,8),∴k=16,
∴反比例函数的解析式为v=(2<t≤5);
(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,
∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分;
(3)弹珠在第5秒末离开轨道,其速度为v=3.2(米/分).
20.解:(1)10小时
(2)216
(3)13.5℃
初中数学冀教版九年级上册第27章 反比例函数27.3 反比例函数的应用随堂练习题: 这是一份初中数学冀教版九年级上册第27章 反比例函数27.3 反比例函数的应用随堂练习题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学冀教版九年级上册27.3 反比例函数的应用精练: 这是一份初中数学冀教版九年级上册27.3 反比例函数的应用精练,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中27.3 反比例函数的应用习题: 这是一份初中27.3 反比例函数的应用习题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。