山西省运城市万荣县重点中学2022年中考冲刺卷数学试题含解析
展开
这是一份山西省运城市万荣县重点中学2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
A.3×109 B.3×108 C.30×108 D.0.3×1010
2.下列二次根式,最简二次根式是( )
A. B. C. D.
3.如图,是的直径,弦,,,则阴影部分的面积为( )
A.2π B.π C. D.
4.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是( )
A. B. C. D.
5.某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
6.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
7.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
8.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
9.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
10.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )
A.10,15 B.13,15 C.13,20 D.15,15
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.
12.分解因式:4m2﹣16n2=_____.
13.已知m=,n=,那么2016m﹣n=_____.
14.分解因式:__________.
15.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .
16.在平面直角坐标系xOy中,点A、B为反比例函数 (x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.
三、解答题(共8题,共72分)
17.(8分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
18.(8分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
求,,的值;求四边形的面积.
19.(8分)如图,分别与相切于点,点在上,且,,垂足为.
求证:;若的半径,,求的长
20.(8分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为 ;
②当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
21.(8分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为 ,点A的坐标是 .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
22.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
(1)如图,点D在线段CB上时,
①求证:△AEF≌△ADC;
②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
(2)当∠DAB=15°时,求△ADE的面积.
23.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
24.如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
将数据30亿用科学记数法表示为,
故选A.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
2、C
【解析】
根据最简二次根式的定义逐个判断即可.
【详解】
A.,不是最简二次根式,故本选项不符合题意;
B.,不是最简二次根式,故本选项不符合题意;
C.是最简二次根式,故本选项符合题意;
D.,不是最简二次根式,故本选项不符合题意.
故选C.
【点睛】
本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.
3、D
【解析】
分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
详解:连接OD,
∵CD⊥AB,
∴ (垂径定理),
故
即可得阴影部分的面积等于扇形OBD的面积,
又∵
∴ (圆周角定理),
∴OC=2,
故S扇形OBD=
即阴影部分的面积为.
故选D.
点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
4、A
【解析】
利用平行线的性质以及相似三角形的性质一一判断即可.
【详解】
解:∵AB⊥BD,CD⊥BD,EF⊥BD,
∴AB∥CD∥EF
∴△ABE∽△DCE,
∴,故选项B正确,
∵EF∥AB,
∴,
∴,故选项C,D正确,
故选:A.
【点睛】
考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、D
【解析】
解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
故选D.
【点睛】
本题考查几何体的三视图.
6、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
7、C
【解析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
8、B
【解析】
解:3400000=.
故选B.
9、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
10、D
【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
【详解】
将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
【点睛】
本题考查中位数和众数的概念,熟记概念即可快速解答.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.
解:设黄球的个数为x个,
根据题意得:=2/3解得:x=1.
∴黄球的个数为1.
12、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
13、1
【解析】
根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
【详解】
解:∵m===,
∴m=n,
∴2016m-n=20160=1.
故答案为:1
【点睛】
本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.
14、3(m-1)2
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
故答案为:3(m-1)2
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
15、1
【解析】
试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
考点:三角形相似的应用.
16、(1,-4)
【解析】
利用旋转的性质即可解决问题.
【详解】
如图,
由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);
所以,B′(1,-4);
故答案为(1,-4).
【点睛】
本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.
三、解答题(共8题,共72分)
17、(1);(2).
【解析】
(1)直接根据概率公式求解;
(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
【详解】
(1)正数为2,所以该球上标记的数字为正数的概率为;
(2)画树状图为:
共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
18、(1),,.(2)6
【解析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
【详解】
解:(1)∵点在上,
∴,
∵点在上,且,
∴.
∵过,两点,
∴,
解得,
∴,,.
(2)如图,延长,交于点,则.
∵轴,轴,
∴,,
∴,,
∴
.
∴四边形的面积为6.
【点睛】
考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
19、(1)见解析(2)5
【解析】
解:(1)证明:如图,连接,则.
∵,
∴.
∵,
∴四边形是平行四边形.
∴.
(2)连接,则.
∵,,,
∴,.
∴.
∴.
设,则.
在中,有.
∴.即.
20、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
【解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
【详解】
(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,
此时D为AB边中点,AD=AC=.
②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示,
∵CE:CF=AC:BC,∴EF∥BC.
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,AC=3,BC=4,∴BC=1.
∴cosA=.∴AD=AC•cosA=3×=.
(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°.
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
∴此时AD=AB=×1=.
综上所述,当AC=3,BC=4时,AD的长为或.
(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
如图所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线
∴CD=DB=AB,
∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.
21、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
【解析】
(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
(3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
【详解】
解:(1)连接AB,与OC交于点D,
四边形是正方形,
∴△OCA为等腰Rt△,
∴AD=OD=OC=2,
∴点A的坐标为.
4,.
(2)如图
∵ 四边形是正方形,
∴,.
∵ 将正方形绕点顺时针旋转,
∴ 点落在轴上.
∴.
∴ 点的坐标为.
∵,
∴.
∵ 四边形,是正方形,
∴,.
∴,.
∴.
∴.
∵,
,
∴ .
∴旋转后的正方形与原正方形的重叠部分的面积为.
(3)设t秒后两点相遇,3t=16,∴t=
①当点P、Q分别在OA、OB时,
∵,OP=t,OQ=2t
∴不能为等腰三角形
②当点P在OA上,点Q在BC上时如图2,
当OQ=QP,QM为OP的垂直平分线,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.
③当点P、Q在AC上时,
不能为等腰三角形
综上所述,当时是等腰三角形
【点睛】
此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
22、(1)①证明见解析;②25;(2)为或50+1.
【解析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.
【详解】
(1)、①证明:在Rt△ABC中,
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=AB=5,
∵点F是AB的中点,
∴AF=AB=5,
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,
即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AEF=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴y2﹣x2=25.
(2)①当点在线段CB上时, 由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,△ADE的面积为;
②当点在线段CB的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得AD2=200+100,
综上所述,△ADE的面积为或.
【点睛】
此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.
23、R= 或R=
【解析】
解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
考点:圆与直线的位置关系.
24、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
相关试卷
这是一份2022-2023学年山西省运城市万荣县九年级(上)期中数学试卷(含解析),共1页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份山西省吕梁市重点中学2021-2022学年中考冲刺卷数学试题含解析,共17页。
这是一份山西省运城市万荣县重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,﹣22×3的结果是,下列命题中错误的有个,下列运算正确的是,7的相反数是等内容,欢迎下载使用。