终身会员
搜索
    上传资料 赚现金
    高中数学必修二 10.1.3 古典概型 教学设计
    立即下载
    加入资料篮
    高中数学必修二  10.1.3 古典概型 教学设计01
    高中数学必修二  10.1.3 古典概型 教学设计02
    高中数学必修二  10.1.3 古典概型 教学设计03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中10.1 随机事件与概率教学设计及反思

    展开
    这是一份高中10.1 随机事件与概率教学设计及反思,共18页。教案主要包含了探究新知,达标检测,小结,课时练等内容,欢迎下载使用。

    10.1.3 古 典 概 型

    本节《普通高中课程标准数学教科书-必修二(人教A版)第十章《10.1.3 古 典 概 型 》,古典概型是继事件的关系与运算的后续部分,本节课主要讲解了古典概型的特征及如何求古典概型的概率.本节内容在教材上起到承上启下的作用,即使对前面内容的进一步应用,又为后续概率的性质做好铺垫.。注意对概率思想方法的理解。发展学生的直观想象、逻辑推理、数学建模的核心素养。

    课程目标

    学科素养

    A .了解随机事件概率的含义及表示.

    B.理解古典概型的特点和概率公式.

    C.了解古典概型的一般求解思路和策略.

     

    1.数学建模:古典概型的概念

    2.逻辑推理:古典概型的应用

    3.数学运算:运用古典概型求概率

    4.数据抽象:古典概型的概念

    1.教学重点:了解随机事件概率的含义及表示.

    2.教学难点:理解古典概型的特点和概率公式.

    多媒体

    教学过程

    教学设计意图

    核心素养目标

     

    一、    温故知新

    事件AB关系

    含义

    符号

    事件B包含A(或称事件A包含于B

    如果事件A发生,则事件B一定发生。

    B AA B

    事件AB相等

    如果事件A发生,则事件B一定发生; 反之,也成立。

    A=B

    事件AB的和事件(或并事件)

    事件AB至少有一个发生的事件

    AB

    事件AB的积事件(或交事件)

    事件AB同时发生的事件

    AB

    事件AB互斥

    事件AB不能同时发生

    AB=φ

    事件AB互为对立事件

    事件AB不能同时发生,但必有一个发生

    AB=ΦAB=Ω

     

    二、探究新知

    研究随机现象,最重要的是知道随机事件发生的可能性大小,对随机事件发生可能性大小的度量(数值)称为事件的概率probability),事件A的概率用P(A)表示.

    我们知道,通过试验和观察的方法可以得到一些事件的概率估计,但这种方法耗时多,而且得到的仅是概率

    的近似值,能否通过建立适当的数学模型,直接计算随机事件的概率呢?

    思考:10.1.1节中,我们讨论过彩票摇号试验、抛掷一枚均匀硬币的试验及掷一枚质地均匀骰子的试验,它们的共同特征有哪些?

    样本点有两个,正面朝上和正面朝下,由于质地均匀,因此样本点出现的可能性是相等的.

    这个试验的样本点有6个,正面出现的点数为1,2,3,4,5,6,由于质地均匀,因此样本点出现的可能性是相等的.

    问题1. 抛掷一枚质地均匀的硬币,每个样本点出现的可能性相等吗?

    问题2. 抛掷一枚质地均匀的骰子,有哪些样本点?每个样本点出现的

                 可能性相等吗?

          彩票摇号试验、抛掷一枚均匀硬币的试验及掷一枚质地均匀骰子的试验,它们具有如下共同特征;

           我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型(classical models of probability),简称古典概型

    思考1

    有限性等可能性

    思考2

    有限性 等可能性

    问题:从所有整数中任取一个数的试验中抽取一个整数是古典概型吗?

    解 不是,因为有无数个样本点.

    判断一个试验是不是古典概型要抓住两点:

      一是 有限性

      二是 等可能性

    1. 考虑下面的随机事件,如何度量事件A发生的可能性大小?

    一个班级中有18名男生、22名女生.采用抽签的方式,从中随机选择一名学生,

    事件A=“抽到男生

    :班级中共有40名学生,从中选择一名学生,因为是随机选取的,所以选到每个学生的可能性都相等,这是一个古典概型.

    抽到男生的可能性大小,取决于男生数在班级学生数中所占的比例大小.

    因此,可以用男生数与班级学生数的比值来度量,显然,这个随机试验的样本空间中有40个样本点,而事件A=“抽到男生包含18个样本点.

    因此,事件A发生的可能性大小为18/40=0.45

    2.下面的随机事件,如何度量事件B发生的可能性大小?

    抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上

    :我们用1表示硬币正面朝上,用0表示硬币反面朝上,则试验的样本空间Ω={(1,1,1),(1,1,0),(1,0,1),(1,0,0),0,1,1),(0,1,0),(0,0,1),(0,0,0)}.共有8个样本点,且每个样本点是等可能发生的,所以这是一个古典概型.

        事件B发生的可能性大小,取决于这个事件包含的样本点在样本空间包含的样本点中所占的比例大小.

            因此,可以用事件包含的样本点数与样本空间包含的样本点数的比值来度量.因为B={(1,0,0),(0,1,0),(0,0,1)},所以事件B发生的可能性大小为3/8=0.375

    一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率

     

     

    其中,n(A)n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.

    1.单选题是标准化考试中常用的题型,一般是从ABC,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?

    解:试验有选A,B,C,D4种可能结果,试验的样本空间可以表示为Ω={A,B,C,D}. 考生随机选择一个答案,表明每个样本点发生的可能性相等,所以这是一个古典概型.

    M=“选中正确答案

    因为正确答案是唯一的,所以n(M)=1.

    所以,考生随机选择一个答案,答对的概率

    小结: 解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的样本点及个数写出随机事件所包含的样本点及个数,然后应用公式求出

     

    1.根据2020年山东省模拟高考试题中发现,在咱们的数学考试中既有单选题又有多选题,多选题是从ABCD四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

    2. 抛掷两枚质地均匀的骰子(标记为I号和),观察两枚骰子分别可能出现的基本结果.

    (1)写出这个试验的样本空间,并判断这个试验是否为古典概型;

     

     

    1

    2

    3

    4

    5

    6

    1

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    2

    (21)

    (22)

    (23)

    (24)

    (25)

    (26)

    3

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    4

    (41)

    (42)

    (43)

    (44)

    (45)

    (46)

    5

    (51)

    (52)

    (53)

    (54)

    (55)

    (56)

    6

    (61)

    (62)

    (63)

    (64)

    (65)

    (66)

     

    2. (2)求下列事件的概率:

    A=“两个点数之和是5”

    B=“两个点数相等

    C=“I号骰子的点数大于号骰子的点数”.

    解:(1)抛掷一枚骰子有6种等可能的结果,I号骰子的每一个结果都可与号骰子的任意一个结果配对,组成掷两枚骰子试验的一个结果用数字m表示I号骰子出现的点数是m,数字n表示号骰子出现的点数是n,则数组(m,n)表示这个试验的一个样本点.因此该试验的样本空间Ω={(m,n)|m,n{1,2,3,4,5,6}},其中共有36个样本点.由于骰子的质地均匀,所以各个样本点出现的可能性相等,

    因此这个试验是古典概型.

    (2)因为A={(1,4),(2,3),(3,2),(4,1)},所以n(A)=4,从而

    因为B={(1,1),(2,2),(3,3),(4,4),(5,5(6,6)},所以n(B)=6,

    因为C={(2,1),(3,1),(3,2),(4,1)4,2),(4,3),5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4)(6,5)},

     所以n(C)=15,

    在上例中,为什么要把两枚骰子标上记号?如果不给两枚骰子标记号,会出现什么情况?你能解释其中的原因吗?

             如果不给两枚骰子标记号,则不能区分所抛掷出的两个点数分别属于哪枚骰子,如抛掷出的结果是1点和2点,有可能第一枚骰子的结果是1点,也有可能第二枚骰子的结果是1.这样,(1,2)和(2,1)的结果将无法区别.

    当不给两枚骰子标记号时,试验的样本空间Ω1={(m,n)|m,n{1,2,3,4,5,6},

    m≤n},n(Ω1)=21.

    事件A=“两个点数之和是5”的结果变为A={(1,4),(2,3)},

    这时P(A)=2/21

    思考:同一个事件的概率,为什么会出现两个不同的结果呢?

     

    1

    2

    3

    4

    5

    6

    1

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    2

    (21)

    (22)

    (23)

    (24)

    (25)

    (26)

    3

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    4

    (41)

    (42)

    (43)

    (44)

    (45)

    (46)

    5

    (51)

    (52)

    (53)

    (54)

    (55)

    (56)

    6

    (61)

    (62)

    (63)

    (64)

    (65)

    (66)

     

    可以发现,36个结果都是等可能的;而合并为21个可能结果时,(1,1)和(1,2)发生的可能性大小不等,这不符合古典概型特征,所以不能用古典概型公式计算概率,因此P(A)=2/21,是错误的.

    思考:同一个事件的概率,为什么会出现两个不同的结果呢?

     

          求解古典概型问题的一般思路:

    (1)明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的可能结果(借助图表可以帮助我们不重不漏地列出所有的可能结果);

    (2)根据实际问题情境判断样本点的等可能性;

    (3)计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.

    3.  袋子中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,求下列事件的概率:

    (1)A=“第一次摸到红球

    (2)B=“第二次摸到红球

    (3)AB=“两次都摸到红球

    解:将两个红球编号为1,2,三个黄球编号为3,4,5.第一次摸球时有5种等可能结果,对应第一次摸球的每个可能结果,第二次摸球时都有4种等可能的结果,将两球的结果配对,组成20种等可能的结果,如表所示

    (1)第一次摸到红球的可能结果有8种(表中第1,2行),A={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5)},所以

    (2)第二次摸到红球的可能结果也有8种(表中第12列),B={(2,1),(3,1),(4,1),(5,1),(1,2),(3,2),(4,2),(5,2)},

    所以

    (3)事件AB包含2个可能结果,即AB={(1,2),(2,1)},所以

    同时摸出2个球则事件AB的概率是多少?

    4. 从两名男生(记为B1B2)、两名女生(记为G1G2)中任意抽取两人

    (1)分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间

    (2)在三种抽样方式下,分别计算抽到的两人都是男生的概率

    :设第一次抽取的人记为x1,第二次抽取的人记为x2,则可用数组(x1,x2)表示样本点

    (1)根据相应的抽样方法可知:有放回简单随机抽样的样本空间Ω1={(B1,B1),(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,B2),(B2,G1),(B2,G2),(G1,B1),(G1,B2),(G1,G1),(G1,G2),(G2,B1) ),(G2,B2),(G2,G1),(G2,G2)}

    不放回简单随机抽样的样本空间Ω2={(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,G1),(B2,G2),(G1,B1),(G1,B2),(G1,G2),(G2,B1) ),(G2,B2),(G2,G1)}

    按性别等比例分层抽样的样本空间

    Ω3=(B1,G1),(B1,G2),(B2,G1), (B2,G2)}

    (2)设事件A=“抽到两名男生”,则对于有放回简单随机抽样,A={ (B1,B1),(B1,B2),(B2,B1),(B2,B2)}.

    因为抽中样本空间Ω1中每一个样本点的可能性都相等,所以这是一个古典概型,因此P(A)=4/16=0.25

    对于不放回简单随机抽样,A={(B1,B2),(B2,B1)}.因为抽中样本空间Ω2中每一个样本点的可能性都相等,所以这是一个古典概型因此P(A)=2/12=1/6≈0.167.

    因为按性别等比例分层抽样,不可能抽到两名男生,所以A=Φ,因此P(A)=0

    此例表明,同一个事件A=“抽到两名男生发生的概率,在按性别等比例分层抽样时最小,在不放回简单随机抽样时次之,在有放回简单随机抽样时最大,因此,抽样方法不同,则样本空间不同,某个事件发生的概率也可能不同

    上一章我们研究过通过抽样调查估计树人中学高一学生平均身高的问题.我们知道,简单随机抽样使总体中每一个个体都有相等的机会被抽中,但因为抽样的随机性,有可能会出现全是男生的极端样本,这就可能高估总体的平均身高.

    上述计算表明,在总体的男、女生人数相同的情况下,用有放回简单随机抽样进行抽样,出现全是男生的样本的概率为0.25;不放回简单随机抽样进行抽样,出现全是男生的样本的概率约为0.167,可以有效地降低出现极端样本的概率.特别是,在按性别等比例分层抽样中,全是男生的样本出现的概率为0,真正避免了这类极端样本的出现.所以,改进抽样方法对于提高样本的代表性很重要.

    故所求的概率P=.

     

     

     

     

     

    由知识回顾,提出问题。发展学生数学抽象、直观想象和逻辑推理的核心素养。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    通过具体问题的概率计算,归纳分析古典概型的特点及运算方法。发展学生数学抽象、逻辑推理的核心素养。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    通过实例分析,让学生掌握分析古典概型的方法,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。

     

     

     

     

     

     

     

     

     

     

     

     

     

    三、达标检测

    1.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1,不放回地再随机抽取1,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为(  )

    A. B. C. D.

    答案:A

    解析:如图:

    基本事件的总数为20,其中第一张卡片上的数大于第二张卡片上的数包括的基本事件个数是10,故所求概率

     

    P=.故选A.

    2.《史记》中讲述了田忌与齐王赛马的故事.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为(  )

    A. B. C. D.

    答案:A

    解析:设齐王的上,,下三个等次的马分别为a,b,c,田忌的上,,下三个等次的马分别记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题意,其中Ab,Ac,Bc是田忌获胜,则田忌获胜的概率为故选A.

    3.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为     . 

    答案:

    解析:5根竹竿中一次随机抽取2根的事件总数为10,它们的长度恰好相差0.3 m的事件数为2,分别是:2.52.8,2.62.9,所求概率为.

    4.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),,[80,90),[90,100].

    (1)求频率分布直方图中a的值;

    (2)估计该企业的职工对该部门评分不低于80的频率;

    (3)从评分在[40,60)的受访职工中,随机抽取2,求此2人的评分都在[40,50)的概率.

     

    :(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.

    (2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以估计该企业职工对该部门评分不低于80的频率为0.4.

    (3)受访职工中评分在[50,60)的有50×0.006×10=3(),记为A1,A2,A3;受访职工中评分在[40,50)的有50×0.004×10=2(),记为B1,B2.从这5名受访职工中随机抽取2,所有可能的结果共有10,它们是(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),又因为所抽取2人的评分都在[40,50)的结果有1,(B1,B2),

     

     

    通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学抽象、逻辑推理、数学运算、数学建模的核心素养。

     

     

     

     

    四、小结

    五、课时练

     

    通过总结,让学生进一步巩固本节所学内容,提高概括能力。

     

    本节课主要讲解了古典概型的特征及如何求古典概型的概率.本节内容在教材上起到承上启下的作用,即使对前面内容的进一步应用,又为后续概率的性质做好铺垫。教学中要注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。

     

     

    相关教案

    人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率教学设计: 这是一份人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率教学设计,共6页。教案主要包含了教学内容,教学目标,教学重,学情分析,教学策略, 教学用具,教学过程,教学反思等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率教学设计及反思: 这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率教学设计及反思,共5页。

    必修 第二册10.1 随机事件与概率教案设计: 这是一份必修 第二册10.1 随机事件与概率教案设计,共5页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map