(新高考)高考数学一轮复习课时练习9.3《圆的方程》(含解析)
展开
这是一份(新高考)高考数学一轮复习课时练习9.3《圆的方程》(含解析),共14页。试卷主要包含了圆的定义与方程,已知圆经过点A和B等内容,欢迎下载使用。
第3讲 圆的方程
最新考纲
考向预测
1.回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.
2.初步了解用代数方法处理几何问题的思想.
命题趋势
以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择题、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.
核心素养
直观想象、数学运算
1.圆的定义与方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆
方程
标准式
(x-a)2+(y-b)2=r2(r>0)
圆心为(a,b)
半径为r
一般式
x2+y2+Dx+Ey+F=0
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系.
(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.
(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.
(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.
常用结论
1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2.
2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
常见误区
1.对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件.
2.解答与圆有关的最值问题要注意数形结合,充分运用圆的性质.
1.判断正误(正确的打“√”,错误的打“×”)
(1)确定圆的几何要素是圆心与半径.( )
(2)方程x2+y2=a2表示半径为a的圆.( )
(3)方程x2+y2+4mx-2y+5m=0表示圆.( )
(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
答案:(1)√ (2)× (3)× (4)√
2.圆心为(1,1)且过原点的圆的方程是( )
A.(x-1)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
解析:选D.因为圆心为(1,1)且过原点,所以该圆的半径r==,则该圆的方程为(x-1)2+(y-1)2=2.
3.(多选)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法中正确的是( )
A.圆M的圆心为(4,-3)
B.圆M被x轴截得的弦长为8
C.圆M的半径为25
D.圆M被y轴截得的弦长为6
解析:选ABD.圆M的一般方程为x2+y2-8x+6y=0,则(x-4)2+(y+3)2=25.圆的圆心坐标为(4,-3),半径为5.显然选项C不正确.ABD均正确.
4.(易错题)若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是________.
解析:将x2+y2+mx-2y+3=0化为圆的标准方程得+(y-1)2=-2.
由其表示圆可得-2>0,解得m2.
答案:(-∞,-2)∪(2,+∞)
5.若圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
解析:设圆心坐标为C(a,0),
因为点A(-1,1)和B(1,3)在圆C上,
所以|CA|=|CB|,
即=,
解得a=2,
所以圆心为C(2,0),
半径|CA|==,
所以圆C的方程为(x-2)2+y2=10.
答案:(x-2)2+y2=10
求圆的方程
[题组练透]
1.(2021·长沙模拟)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为( )
A. B. C. D.
解析:选B.圆心在直线BC的垂直平分线,即x=1上,设圆心D(1,b),由|DA|=|DB|得|b|=,解得b=,所以圆心到原点的距离为d==.
2.已知圆的半径为2,圆心在x轴的正半轴上,且与y轴相切,则圆的方程是( )
A.x2+y2-4x=0 B.x2+y2+4x=0
C.x2+y2-2x-3=0 D.x2+y2+2x-3=0
解析:选A.因为圆的半径为2,圆心在x轴的正半轴上,且与y轴相切,所以圆的圆心坐标为(2,0).所以圆的方程为(x-2)2+y2=4,即x2+y2-4x=0.故选A.
3.已知圆心在x轴上,半径为的圆位于y轴右侧,且截直线x+2y=0所得弦的长为2,则圆的方程为________.
解析:根据题意,设圆的圆心坐标为(a,0)(a>0),则圆的标准方程为(x-a)2+y2=5(a>0),则圆心到直线x+2y=0的距离d==a.又该圆截直线x+2y=0所得弦的长为2,所以可得12+=5,解得a=2.故圆的方程为(x-2)2+y2=5.
答案:(x-2)2+y2=5
求圆的方程的两种方法
(1)直接法
根据圆的几何性质,直接求出圆心坐标和半径,进而写出圆的方程.
(2)待定系数法
①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;
②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.
与圆有关的最值问题
角度一 借助几何性质求最值
已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)求的最大值和最小值;
(3)求y-x的最大值和最小值.
【解】 (1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,所以圆心C的坐标为(2,7),半径r=2.又|QC|==4,所以|MQ|max=4+2=6,|MQ|min=4-2=2.
(2)可知表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.因为直线MQ与圆C有交点,所以≤2,可得2-≤k≤2+,所以的最大值为2+,最小值为2-.
(3)设y-x=b,则x-y+b=0.当直线y=x+b与圆C相切时,截距b取到最值,所以=2,所以b=9或b=1.所以y-x的最大值为9,最小值为1.
与圆有关的最值问题的求解策略
处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:
常见类型
解题思路
μ=型
转化为动直线斜率的最值问题
t=ax+by型
转化为动直线截距的最值问题,或用三角代换求解
m=(x-a)2+(y-b)2型
转化为动点与定点的距离的平方的最值问题
角度二 建立函数关系求最值
设点P(x,y)是圆(x-3)2+y2=4上的动点,定点A(0,2),B(0,-2),则|+|的最大值为________.
【解析】 由题意,知=(-x,2-y),=(-x,-2-y),所以+=(-2x,-2y),由于点P(x,y)是圆上的点,故其坐标满足方程(x-3)2+y2=4,故y2=-(x-3)2+4,所以|+|==2.由圆的方程(x-3)2+y2=4,易知1≤x≤5,所以当x=5时,|+|的值最大,最大值为2=10.
【答案】 10
建立函数关系式求最值
根据已知条件列出相关的函数关系式,再根据关系式的特征选用基本不等式、函数单调性等方法求最值.
1.已知点P(x,y)为圆C:x2+y2-4x+3=0上一点,C为圆心,则·(O为坐标原点)的取值范围是( )
A.[-3,1] B.[-1,1]
C.[-1,3] D.[1,3]
解析:选C.将圆C的方程x2+y2-4x+3=0化为(x-2)2+y2=1,所以圆心C的坐标为(2,0).所以=(2-x,-y).而=(-x,-y),所以·=x2+y2-2x.因为x2+y2-4x+3=0,所以x2+y2=4x-3,所以·=4x-3-2x=2x-3.因为(x-2)2+y2=1,所以(x-2)2≤1,所以-1≤x-2≤1,即1≤x≤3.因此-1≤2x-3≤3,从而·(O为坐标原点)的取值范围为[-1,3].故选C.
2.(多选)若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为( )
A.4 B.6
C.3+1 D.8
解析:选ABC.由题意,知圆C:(x+3)2+(y-3)2=1的圆心坐标为(-3,3),半径为1,直线y=kx-1过定点(0,-1).由图可知,圆心C到直线y=kx-1距离的最大值为=5,则点P到直线y=kx-1距离的最大值为5+1=6,最小值为5-1=4,因此A,B,C正确,只有D不正确.故选ABC.
3.设点P是函数y=-图象上的任意一点,点Q坐标为(2a,a-3)(a∈R),则|PQ|的最小值为________.
解析:函数y=-的图象表示圆(x-1)2+y2=4的下半圆(包括与x轴的交点).令点Q的坐标为(x,y),则得y=-3,即x-2y-6=0,作出图象如图所示.
由于圆心(1,0)到直线x-2y-6=0的距离d==>2,所以直线x-2y-6=0与圆(x-1)2+y2=4相离,因此|PQ|的最小值是-2.
答案:-2
与圆有关的轨迹问题
已知A(2,0)为圆x2+y2=4上一定点,B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
【解】 (1)设AP的中点为M(x,y),
由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,
所以(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y),
在Rt△PBQ中,|PN|=|BN|,
设O为坐标原点,连接ON,则ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
与圆有关的轨迹问题的四种求法
1.(2020·高考全国卷Ⅲ)在平面内,A,B是两个定点,C是动点.若·=1,则点C的轨迹为( )
A.圆 B.椭圆 C.抛物线 D.直线
解析:选A.以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系,设A(-a,0),B(a,0),C(x,y),因为·=1,所以(x+a)(x-a)+y·y=1,所以x2+y2=a2+1,所以点C的轨迹为圆,故选A.
2.已知A(-1,0),B(1,0),C为平面内的一动点,且满足|AC|=|BC|,则点C的轨迹方程为( )
A.x2+y2+6x+1=0 B.x2+y2-6x+1=0
C.x2+y2-x+1=0 D.x2+y2+x+1=0
解析:选B.由题意可设点C的坐标为(x,y),因为满足|AC|=|BC|,由两点间的距离公式可得=×,即x2+2x+1+y2=2(x2-2x+1+y2),所以x2+y2-6x+1=0即为点C的轨迹方程.故选B.
[A级 基础练]
1.若点(2a,a-1)在圆x2+(y-1)2=5的内部,则实数a的取值范围是( )
A.-
相关试卷
这是一份高考数学一轮复习课时作业:50 圆的方程 Word版含解析,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份新高考数学一轮复习讲义9.3《圆的方程》(2份打包,解析版+原卷版),文件包含新高考数学一轮复习讲义93《圆的方程》含详解doc、新高考数学一轮复习讲义93《圆的方程》原卷版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份新高考数学一轮复习考点练习考点33 圆的方程 (含解析),共12页。试卷主要包含了 圆的定义,圆的标准方程,圆的一般方程等内容,欢迎下载使用。