搜索
    上传资料 赚现金
    英语朗读宝

    函数与导数一题多考点教学设计--高三数学一轮复习

    函数与导数一题多考点教学设计--高三数学一轮复习第1页
    函数与导数一题多考点教学设计--高三数学一轮复习第2页
    函数与导数一题多考点教学设计--高三数学一轮复习第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    函数与导数一题多考点教学设计--高三数学一轮复习

    展开

    函数与导数——一题多考点36题干:已知函数考点 1:切线问题(1)a = 0b = -3 时,求 f(x) 在横坐标 2 处的切线方程      (2)f(x) 在横坐标-1 处的切线方程为 y = 4x + 4,求 a,b 的值      (3)a = -3b = 2 时,求曲线 y = f(x) - 9 过原点的切线方程      (4)b = 1 时,曲线 y = f(x) 存在垂直于 y 轴的切线,求 a 的取值范围      (5)a = 0b = -2 时,求曲线 y = f(x) 上的点到射线 y = x - 4(x ≥ 0) 的距离的最小值,并求这一点的坐标。      考点 2:单调性(6)a = 0b = -3 时,求 f(x) 的单调区间      (7)b = 4 时,若 f(x) R 上为增函数,求实数 a 的取值范围.       (8)b = 4 时,若 f(x) (0+∞) 上为增函数,求实数 a 的取值范围.       (9)a = 0 时,若 f(x) 在区间(-1,1) 上为减函数,求 b 的取值范围       (10)a = 0 时,若 f(x) 的单调递减区间为(-1,1),求 b 的值.       (11)a = 0 f(x) 在区间(-1,1) 上存在减区间,求 b 的取值范围       (12)a = 0 f(x) 在区间(-1,1) 上不单调,求 b 的取值范围       (13)b = 0 讨论 f(x) [0,2] 的单调性;       (14)b = 1 时讨论 f(x) (0,+∞) 的单调性;       考点 3:极值问题(15)a = 0b = -12 时,求 f(x) R的极值      (16)f(x) x = 1 处取得极小值 0,求 f(x) 的极大值       (17)b = 3 时,函数 f(x) 有两个不同的极值点( 或三个单调区间),求 a 的取值范围。       (18)b = 3 时,函数 f(x) (2,3) 至少有一个极值点,求 a 的取值范围       (19)b = 1 时,函数 f(x) (0,+∞) 上既有极大值又有极小值,求 a 的取值范围。       (20)b = 0 时,讨论函数 f(x) 在区间[0,2] 上的极值       考点 4:最值(21)a =b = 0 时,求 f(x) 在区间[0,2] 上的最值      (22)a2 - 3b = 0,求函数 f (x) 在区间[-1,6] 上的最小值 g(a),并求函数 g(a) 取得最小值时的 a,b 的值      (23)b = 0 时,讨论函数 f(x) 在区间[0,2] 上的最小值       (24)b = 0 时,若函数 f(x) 在区间[0,2] 上的最小值为 8, a 的值       (25)b = 0 时,讨论函数 f(x) 在区间[0,2] 上的最大值      (26)b = 0 时,若函数 f(x) 在区间[0,2] 上的最大值为 f(2),求 a 的取值范围      考点 5:不等式恒成立问题(27)a = -1 时,若对任意的 x [0,+∞),都有 f(x) ≥ 0 恒成立b 的取值范围      (28)b = -2a 时,若对任意的 x (2,+∞),都有 f(x) > a2 恒成立,求 a 的取值范围      (29)b = 9 时,若对任意的 x (0,+∞),都有 6xlnx + ≥ 0 恒成立,求 a 的取值范围      (30)a = 0b = -3 时,证明:任意的 x R,都有 f(x) + 2 ≥  恒成立         (31)b = 0 时,若对任意的 x1,x2 (0,+∞) x1 < x2 都有 f (x1) - f (x2) < a(x1 - x2) 成立, 求 a 的取值范围      考点 6:零点问题(32)a = 0b = -3 时,讨论方程 f(x) = m 的根的个数      (33)b = -a2 时,讨论函数 f(x) 的零点个数       (34)b = -a2 时,若函数 f(x) 有两个零点a 的取值范围       (35)b = -a,若 f(x) (0,+∞) 上有两个极值点,求 a 的取值范围( 极值点转零点)       (36)b = -a,若 f(x) (0,+∞) 上有两个极值点 x1,x2,求证 x1 + x2 > 2 ( 极值点偏移)

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map