(新高考)高考数学一轮考点复习4.1《任意角和弧度制及任意角的三角函数》课时跟踪检测(含详解)
展开
这是一份(新高考)高考数学一轮考点复习4.1《任意角和弧度制及任意角的三角函数》课时跟踪检测(含详解),共5页。试卷主要包含了下列结论中正确的是等内容,欢迎下载使用。
课时跟踪检测(十八) 任意角和弧度制及任意角的三角函数1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( )A. B.C.- D.-解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快10分钟,故应转过的角为圆周的,即为-×2π=-.2.已知点P(sin(-30°),cos(-30°))在角θ的终边上,且θ∈[-2π,0),则角θ的大小为( )A.- B.C.- D.-解析:选D 因为P(sin(-30°),cos(-30°)),所以P,所以θ是第二象限角,又θ∈[-2π,0),所以θ=-.3.已知角α的终边经过点(3,-4),则sin α+=( )A.- B.C. D.解析:选D ∵角α的终边经过点(3,-4),∴sin α=-,cos α=,∴sin α+=-+=.故选D.4.已知角α的始边与x轴的正半轴重合,顶点在坐标原点,角α终边上的一点P到原点的距离为,若α=,则点P的坐标为( )A.(1,) B.(,1)C.(,) D.(1,1)解析:选D 设P(x,y),则sin α==sin,∴y=1.又cos α==cos,∴x=1,∴P(1,1).5.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为( )A.1 B.-1C.3 D.-3解析:选B 由α=2kπ-(k∈Z)及终边相同的角的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.6.(多选)下列结论中正确的是( )A.若角α的终边过点P(3k,4k)(k≠0),则sin α=B.若α是第一象限角,则为第一或第三象限角C.若扇形的周长为6,半径为2,则其中心角的大小为1弧度D.若0<α<,则sin α<tan α解析:选BCD 当k=-1时,P(-3,-4),则sin α=-,故A错误;∵2kπ<α<2kπ+,k∈Z,∴kπ<<kπ+,k∈Z,∴为第一或第三象限角,故B正确;|α|===1,故C正确;∵0<α<,∴sin α<tan α⇔sin α<⇔cos α<1,故D正确.7.已知角α的终边经过点(,-1),则角α的最小正值是( )A. B.C. D.解析:选B ∵sin α==- ,且α的终边在第四象限,∴角α的最小正值是.8.已知α,β是第一象限角,且sin α>sin β,则( )A.α>β B.α<βC.cos α>cos β D.tan α>tan β解析:选D 因为α,β是第一象限角,所以sin α>0,sin β>0,又sin α>sin β,所以sin2α>sin2β>0,所以1-cos2α>1-cos2β,所以cos2α<cos2β,所以>>0,所以tan2α>tan2β,因为tan α>0,tan β>0,所以tan α>tan β.故选D.9.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________.解析:因为α=1 560°=4×360°+120°,所以与α终边相同的角为360°×k+120°,k∈Z,令k=-1或k=0可得θ=-240°或θ=120°.答案:120°或-240°10.若角α的终边与直线y=3x重合,且sin α<0,又P(m,n)是角α终边上一点,且|OP|=,则m-n=________.解析:由已知tan α=3,∴n=3m,又m2+n2=10,∴m2=1,又sin α<0,∴m=-1,n=-3.∴m-n=2.答案:211.已知扇形的周长为4,当它的半径为________和圆心角为______弧度时,扇形面积最大,这个最大面积是________.解析:设扇形圆心角为α,半径为r,则2r+|α|r=4,∴|α|=-2.∴S扇形=|α|·r2=2r-r2=-(r-1)2+1,∴当r=1时,(S扇形)max=1,此时|α|=2.答案:1 2 112.已知圆O与直线l相切于点A,点P,Q同时从A点出发,P沿着直线l向右,Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动,连接OQ,OP(如图),则阴影部分面积S1,S2的大小关系是________.解析:设运动速度为m,运动时间为t,圆O的半径为r,则=AP=tm,根据切线的性质知OA⊥AP,∴S1=S扇形AOQ-S扇形AOB=tm·r-S扇形AOB,S2=S△AOP-S扇形AOB=tm·r-S扇形AOB,∴S1=S2恒成立.答案:S1=S213.已知角θ的终边过点P(-4a,3a)(a≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P(-4a,3a)(a≠0),所以x=-4a,y=3a,r=5|a|,当a>0时,r=5a,sin θ+cos θ=-=-.当a<0时,r=-5a,sin θ+cos θ=-+=.(2)当a>0时,sin θ=∈,cos θ=-∈,则cos(sin θ)·sin(cos θ)=cos ·sin<0;当a<0时,sin θ=-∈,cos θ=∈,则cos(sin θ)·sin(cos θ)=cos·sin >0.综上,当a>0时,cos(sin θ)·sin(cos θ)的符号为负;当a<0时,cos(sin θ)·sin(cos θ)的符号为正.14.已知sin α<0,tan α>0.(1)求α角的集合;(2)求终边所在的象限;(3)试判断 tansin cos的符号.解:(1)由sin α<0,知α在第三、四象限或y轴的负半轴上;由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为.(2)由2kπ+π<α<2kπ+,k∈Z,得kπ+<<kπ+,k∈Z,故终边在第二、四象限.(3)当在第二象限时,tan <0,sin >0, cos <0,所以tansincos取正号;当在第四象限时,tan<0,sin<0, cos>0,所以 tansincos也取正号.因此,tansin cos 取正号.15.如图,在平面直角坐标系xOy中,角α的始边与x轴的非负半轴重合且与单位圆相交于A点,它的终边与单位圆相交于x轴上方一点B,始边不动,终边在运动.(1)若点B的横坐标为-,求tan α的值;(2)若△AOB为等边三角形,写出与角α终边相同的角β的集合;(3)若α∈,请写出弓形AB的面积S与α的函数关系式.解:(1)由题意可得B,根据三角函数的定义得tan α==-.(2)若△AOB为等边三角形,则B,可得tan∠AOB==,故∠AOB=.故与角α终边相同的角β的集合为{β|β=+2kπ,k∈Z}.(3)若α∈,则S扇形OAB=αr2=α,而S△AOB=×1×1×sin α=sin α,故弓形AB的面积S=S扇形OAB-S△AOB=α-sin α,α∈.
相关试卷
这是一份(新高考)高考数学一轮考点复习8.4《椭圆》课时跟踪检测(含详解),共10页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮考点复习9.1《统计》课时跟踪检测(含详解),共7页。
这是一份(新高考)高考数学一轮考点复习8.5《双曲线》课时跟踪检测(含详解),共9页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。