初中数学第21章 二次函数与反比例函数21.6 综合与实践 获得最大利润精品一课一练
展开1.某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?
2.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数表达式(不要求写出x的取值范围).
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润p最大?
3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
4.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
5.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:
请根据上面的信息,解决问题:
(1)设AB=x(m)(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
6.某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其它费用450元.
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利润w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利润最大?最大利润是多少元?
7.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
8.某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.
(1)求甲、乙两种水果的单价分别是多少元?
(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?
9.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.
(1)求y与x的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
10.某超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所示,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.
(1)将表格的信息填写完整;
(2)求y关于x的函数表达式;
(3)如果购进两种书包的总费用不超过4500元且购进B种书包的数量不大于A种书包的3倍,那么超市如何进货才能获利最大?并求出最大利润.
11.如图是一种窗框的设计示意图,矩形ABCD被分成上下两部分,上部的矩形CDFE由两个正方形组成,制作窗框的材料总长为6m.
(1)若AB为1m,直接写出此时窗户的透光面积 m2;
(2)设AB=x,求窗户透光面积S关于x的函数表达式,并求出S的最大值.
12.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?
参考答案
1.解:(1)y=(30-20+x)(180-10x)=-10x2+80x+1800(0≤x≤5,且x为整数);
(2)当x=4时,y最大=1960元;
∴每件商品的售价为34元.
答:每件商品的售价为34元时,商品的利润最大,为1960元;
(3))1920=-10x2+80x+1800,
x2-8x+12=0,
即(x-2)(x-6)=0,
解得x=2或x=6,
∵0≤x≤5,
∴x=2,
∴售价为32元时,利润为1920元.
2.解:(1)设y与x满足的函数表达式为y=kx+b.由题意,得
24k+b=36,29k+b=21,
k=﹣3,b=108.
故y与x满足的函数表达式为y=﹣3x+108.
(2)每天获得的利润为p=(﹣3x+108)(x﹣20)
=﹣3x2+168x﹣2160
=-3(x﹣28)2+192.
故当销售价定为28元时,每天获得的利润最大.
3.解:(1)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣12000,
∴y与x的关系式为:y=﹣2x2+340x﹣12000.
(2)y=﹣2x2+340x﹣12000=﹣2(x﹣85)2+2450
∴当x=85时,y的值最大.
(3)当y=2250时,可得方程﹣2(x﹣85)2+2450=2250
解这个方程,得x1=75,x2=95根据题意,x2=95不合题意应舍去
∴当销售单价为75元时,可获得销售利润2250元.
4.解:(1)y=﹣3x+240;
(2) w=﹣3x2+360x﹣9600;
(3)销售价为55元时获得最大利润1125元.
5.解:(1)AB=x(m),可得BC=69+3-2x=(72-2x)(m).
(2)小英说法正确,理由如下:
矩形面积S=x(72-2x)=-2(x-18)2+648,
∵72-2x>0,
∴x<36,
∴0<x<36,
∴当x=18时,S取最大值,
此时x≠72-2x,
∴面积最大的不是正方形.
6.解:(1)设y=kx+b,根据题意得,60k+b=80,50k+b=100.
解得:k=﹣2,b=200,y=﹣2x+200 自变量x的取值范围是: 30≤x≤60
(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450
(3)W=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;
∵30≤x≤60,
∴x=60时,w有最大值为1950元,
∴当销售单价为60元时,该公司日获利最大,为1950元.
7.解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,
当50≤x≤90时,
y=(200﹣2x)(90﹣30)=﹣120x+12000,
综上所述:y=;
(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,
当x=45时,y最大=﹣2×452+180×45+2000=6050,
当50≤x≤90时,y随x的增大而减小,
当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
8.解:(1)设甲种水果的单价是x元,则乙种水果的单价是(x+4)元,,
解得,x=16,经检验,x=16是原分式方程的解,
∴x+4=20,
答:甲、乙两种水果的单价分别是16元、20元;
(2)设购进甲种水果a千克,则购进乙种水果(200﹣a)千克,利润为w元,
w=(20﹣16)a+(25﹣20)(200﹣a)=﹣a+1000,
∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,
解得,145≤a≤150,
∴当a=145时,w取得最大值,此时w=855,200﹣a=55,
答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.
9.解:由题意
(1)y=(x﹣5)(100﹣×5)=﹣10x2+210x﹣800
故y与x的函数关系式为:y=﹣10x2+210x﹣800
(2)要使当天利润不低于240元,则y≥240,
∴y=﹣10x2+210x﹣800=﹣10(x﹣10.5)2+302.5=240
解得,x1=8,x2=13
∵﹣10<0,抛物线的开口向下,
∴当天销售单价所在的范围为8≤x≤13
(3)∵每件文具利润不超过80%
∴,得x≤9
∴文具的销售单价为6≤x≤9,
由(1)得y=﹣10x2+210x﹣800=﹣10(x﹣10.5)2+302.5
∵对称轴为x=10.5
∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大
∴当x=9时,取得最大值,此时y=﹣10(9﹣10.5)2+302.5=280
即每件文具售价为9元时,最大利润为280元
10.解:(1)答案为100﹣x;10x;15(100﹣x);
(2)y=10x+15(100﹣x)=﹣5x+1500,
即y关于x的函数表达式为y=﹣5x+1500;
(3)由题意可得50x+40(100﹣x)≤4500,100﹣x≤3x,
解得25≤x≤50,
∵y=﹣5x+1500,﹣5<0,
∴y随x的增大而减小,
∴当x=25时,y有最大值,
最大值为:﹣5×25+1500=1375(元).
即当购进A种书包25个,B种书包75个时,超市可以获得最大利润;最大利润是1375元.
11.解:(1)∵AB=1,∴AD=(6﹣3﹣0.5)×eq \f(1,2)=eq \f(5,4),
∴窗户的透光面积=AB•AD=eq \f(5,4)×1=eq \f(5,4).
(2)∵AB=x,∴AD=3﹣eq \f(7,4)x.∴S=x(3﹣eq \f(7,4)x)=﹣eq \f(7,4)x2+3x.
∵S=﹣eq \f(7,4)x2+3x=﹣eq \f(7,4)(x﹣eq \f(6,7))2+1eq \f(2,7),
∴当x=eq \f(6,7)时,S的最大值=1eq \f(2,7).
12.解:(1)y=(x﹣50)[50+5(100﹣x)]
=(x﹣50)(﹣5x+550)
=﹣5x2+800x﹣27500,
∴y=﹣5x2+800x﹣27500(50≤x≤100);
(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,
∵a=﹣5<0,
∴抛物线开口向下.
∵50≤x≤100,对称轴是直线x=80,
∴当x=80时,y最大值=4500;
(3)当y=4000时,﹣5(x﹣80)2+4500=4000,
解得x1=70,x2=90.
∴当70≤x≤90时,每天的销售利润不低于4000元.
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200﹣2x
品牌
购买个数(个)
进价(元/个)
售价(元/个)
获利(元)
A
x
50
60
___
B
___
40
55
___
数学九年级上册第21章 二次函数与反比例函数21.6 综合与实践 获得最大利润综合训练题: 这是一份数学九年级上册第21章 二次函数与反比例函数21.6 综合与实践 获得最大利润综合训练题,共15页。试卷主要包含了6练习题,1x2+2,9min,5秒C,【答案】A,【答案】B,2秒最接近6秒,,【答案】C等内容,欢迎下载使用。
沪科版七年级下册8.5 综合与实践 纳米材料的奇异特性习题: 这是一份沪科版七年级下册8.5 综合与实践 纳米材料的奇异特性习题,共7页。试卷主要包含了5《综合与实践》课时练习,下列因式分解结果正确的是,分解因式等内容,欢迎下载使用。
沪科版七年级下册7.4 综合与实践排队问题精品随堂练习题: 这是一份沪科版七年级下册7.4 综合与实践排队问题精品随堂练习题,共6页。