(新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解)
展开
这是一份(新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解),共13页。
第五节 数列的综合应用
核心素养立意下的命题导向
1.数列与传统数学文化相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养.
2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.
3.数列与函数、不等式相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.
题型一 等差、等比数列的综合问题
[典例] 数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.
[解] (1)由an+1=2Sn+1,可得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2an,则an+1=3an(n≥2).
当n=1时,a2=2S1+1=3=3a1,满足上式,
故{an}是首项为1,公比为3的等比数列,所以an=3n-1.
(2)设等差数列{bn}的公差为d.
由T3=15,即b1+b2+b3=15,可得b2=5,
故b1=5-d,b3=5+d.
又a1=1,a2=3,a3=9,且由a1+b1,a2+b2,a3+b3成等比数列可得(1+5-d)(9+5+d)=(3+5)2,
解得d=2或d=-10.
因为等差数列{bn}的各项为正,
所以d>0.
所以d=2,b1=3,所以Tn=3n+×2=n2+2n.
[方法技巧]
等差、等比数列的综合问题的解题技巧
(1)将已知条件转化为等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.求解过程中注意合理选择有关公式,正确判断是否需要分类讨论.
(2)一定条件下,等差数列与等比数列之间是可以相互转化的,即{an}为等差数列⇔ {aan }(a>0且a≠1)为等比数列;{an}为正项等比数列⇔{logaan}(a>0且a≠1)为等差数列.
[针对训练]
已知无穷数列{an}中,a1,a2,…,am是首项为2,公差为3的等差数列,am+1,am+2,…,a2m是首项为2,公比为2的等比数列(其中m≥3,m∈N*),并对任意的n∈N*,均有an+2m=an成立.
(1)当m=14时,求a1 000;
(2)若a52=128,试求m的值.
解:由题设得an=3n-1(1≤n≤m),am+n=2n(1≤n≤m).
(1)当m=14时,数列的周期为28.
因为1 000=28×35+20,而a20是等比数列中的项,
所以a1 000=a20=a14+6=26=64.
(2)显然,a52=128不是数列{an}中等差数列的项.
设am+k是第一个周期中等比数列中的第k项,则am+k=2k.
因为128=27,所以等比数列中至少有7项,即m≥7,则一个周期中至少有14项.
所以a52最多是第三个周期中的项.
若a52是第一个周期中的项,则a52=am+7=128,
所以m=52-7=45;
若a52是第二个周期中的项,则a52=a3m+7=128,
所以3m=45,m=15;
若a52是第三个周期中的项,则a52=a5m+7=128,
所以5m=45,m=9.
综上,m的值为45或15或9.
题型二 数列的新定义问题
[典例] Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lg an],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.
(1)求b1,b11,b101;
(2)求数列{bn}的前1 000项和.
[思路点拨]
关键信息
信息转化
Sn为等差数列{an}的前n项和,且a1=1,S7=28
可以求得数列{an}的通项公式
bn=[lg an],[x]的定义
可以分别求出b1,b2,…,b1 000
数列{bn}的前1 000项和
分组求和
[解] (1)设数列{an}的公差为d,
由已知得7+21d=28,解得d=1.
所以数列{an}的通项公式为an=n.
b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.
(2)记{bn}的前n项和为Tn,
则T1 000=b1+b2+…+b1 000=[lg a1]+[lg a2]+…+[lg a1 000],
当0≤lg an0,
因此c1+c2+c3+…+cn
相关学案
这是一份(新高考)高考数学一轮复习学案7.4《数列求和》(含详解),共11页。
这是一份(新高考)高考数学一轮考点复习6.4《数列求和》学案 (含详解),共14页。
这是一份(新高考)高考数学一轮考点复习6.3《等比数列及其前n项和》学案 (含详解),共18页。