搜索
    上传资料 赚现金
    英语朗读宝

    (新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解)

    (新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解)第1页
    (新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解)第2页
    (新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解)第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解)

    展开

    这是一份(新高考)高考数学一轮考点复习6.5《数列的综合应用》学案 (含详解),共13页。
    第五节 数列的综合应用
    核心素养立意下的命题导向
    1.数列与传统数学文化相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养.
    2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.
    3.数列与函数、不等式相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.
    题型一 等差、等比数列的综合问题
    [典例] 数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).
    (1)求{an}的通项公式;
    (2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.
    [解] (1)由an+1=2Sn+1,可得an=2Sn-1+1(n≥2),
    两式相减得an+1-an=2an,则an+1=3an(n≥2).
    当n=1时,a2=2S1+1=3=3a1,满足上式,
    故{an}是首项为1,公比为3的等比数列,所以an=3n-1.
    (2)设等差数列{bn}的公差为d.
    由T3=15,即b1+b2+b3=15,可得b2=5,
    故b1=5-d,b3=5+d.
    又a1=1,a2=3,a3=9,且由a1+b1,a2+b2,a3+b3成等比数列可得(1+5-d)(9+5+d)=(3+5)2,
    解得d=2或d=-10.
    因为等差数列{bn}的各项为正,
    所以d>0.
    所以d=2,b1=3,所以Tn=3n+×2=n2+2n.
    [方法技巧]
    等差、等比数列的综合问题的解题技巧
    (1)将已知条件转化为等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.求解过程中注意合理选择有关公式,正确判断是否需要分类讨论.
    (2)一定条件下,等差数列与等比数列之间是可以相互转化的,即{an}为等差数列⇔ {aan }(a>0且a≠1)为等比数列;{an}为正项等比数列⇔{logaan}(a>0且a≠1)为等差数列.
    [针对训练]
    已知无穷数列{an}中,a1,a2,…,am是首项为2,公差为3的等差数列,am+1,am+2,…,a2m是首项为2,公比为2的等比数列(其中m≥3,m∈N*),并对任意的n∈N*,均有an+2m=an成立.
    (1)当m=14时,求a1 000;
    (2)若a52=128,试求m的值.
    解:由题设得an=3n-1(1≤n≤m),am+n=2n(1≤n≤m).
    (1)当m=14时,数列的周期为28.
    因为1 000=28×35+20,而a20是等比数列中的项,
    所以a1 000=a20=a14+6=26=64.
    (2)显然,a52=128不是数列{an}中等差数列的项.
    设am+k是第一个周期中等比数列中的第k项,则am+k=2k.
    因为128=27,所以等比数列中至少有7项,即m≥7,则一个周期中至少有14项.
    所以a52最多是第三个周期中的项.
    若a52是第一个周期中的项,则a52=am+7=128,
    所以m=52-7=45;
    若a52是第二个周期中的项,则a52=a3m+7=128,
    所以3m=45,m=15;
    若a52是第三个周期中的项,则a52=a5m+7=128,
    所以5m=45,m=9.
    综上,m的值为45或15或9.
    题型二 数列的新定义问题
    [典例] Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lg an],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.
    (1)求b1,b11,b101;
    (2)求数列{bn}的前1 000项和.
    [思路点拨]
    关键信息
    信息转化
    Sn为等差数列{an}的前n项和,且a1=1,S7=28
    可以求得数列{an}的通项公式
    bn=[lg an],[x]的定义
    可以分别求出b1,b2,…,b1 000
    数列{bn}的前1 000项和
    分组求和

    [解] (1)设数列{an}的公差为d,
    由已知得7+21d=28,解得d=1.
    所以数列{an}的通项公式为an=n.
    b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.
    (2)记{bn}的前n项和为Tn,
    则T1 000=b1+b2+…+b1 000=[lg a1]+[lg a2]+…+[lg a1 000],
    当0≤lg an0,
    因此c1+c2+c3+…+cn

    相关学案

    (新高考)高考数学一轮复习学案7.4《数列求和》(含详解):

    这是一份(新高考)高考数学一轮复习学案7.4《数列求和》(含详解),共11页。

    (新高考)高考数学一轮考点复习6.4《数列求和》学案 (含详解):

    这是一份(新高考)高考数学一轮考点复习6.4《数列求和》学案 (含详解),共14页。

    (新高考)高考数学一轮考点复习6.3《等比数列及其前n项和》学案 (含详解):

    这是一份(新高考)高考数学一轮考点复习6.3《等比数列及其前n项和》学案 (含详解),共18页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map