终身会员
搜索
    上传资料 赚现金
    陕西西安市爱知中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    陕西西安市爱知中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    陕西西安市爱知中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    陕西西安市爱知中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西西安市爱知中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份陕西西安市爱知中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了函数y=中自变量x的取值范围是,济南市某天的气温等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为(  )
    A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
    2.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).

    A. B. C. D.
    3.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )

    A. B. C. D.
    4.如图是二次函数的部分图象,由图象可知不等式的解集是( )

    A. B. C.且 D.x<-1或x>5
    5.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是(  )

    A. B. C. D.
    6.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

    A.①③ B.②③ C.③④ D.②④
    7.函数y=中自变量x的取值范围是
    A.x≥0 B.x≥4 C.x≤4 D.x>4
    8.下列图形中是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    9.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
    A.13 B.3 C.-13 D.-3
    10.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
    步数(万步)
    1.0
    1.2
    1.1
    1.4
    1.3
    天数
    3
    3
    5
    7
    12
    在每天所走的步数这组数据中,众数和中位数分别是(  )
    A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算:___________.
    12.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).

    13.化简;÷(﹣1)=______.
    14.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.
    15.反比例函数的图象经过点(﹣3,2),则k的值是_____.当x大于0时,y随x的增大而_____.(填增大或减小)
    16.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.
    三、解答题(共8题,共72分)
    17.(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.

    18.(8分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
    19.(8分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
    (1)当点R与点B重合时,求t的值;
    (2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
    (3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
    (4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.

    20.(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
    (1)求该二次函数的表达式;
    (2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
    (3)在(2)的条件下,请解答下列问题:
    ①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
    ②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.

    21.(8分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.

    (1)在图(1)中画出一个等腰△ABE,使其面积为3.5;
    (2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.
    22.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
    (1)求证:△ABE∽△ECM;
    (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
    (3)当线段AM最短时,求重叠部分的面积.

    23.(12分)综合与探究:
    如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
    (1)求二次函数的表达式;
    (2)求点 A,B 的坐标;
    (3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.

    24.小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:

    (1)求两人相遇时小明离家的距离;
    (2)求小丽离距离图书馆500m时所用的时间.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    科学记数法的表示形式为a×10 的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.000 000 04=4×10,
    故选C
    【点睛】
    此题考查科学记数法,难度不大
    2、D
    【解析】
    设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
    解:∵,..又∵过点,交于点,∴,
    ∴,∴.故选D.

    3、D
    【解析】
    先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
    【详解】
    由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
    当y=0时,x=1.
    故选D.
    【点睛】
    本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
    4、D
    【解析】
    利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
    由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
    ∴图象与x轴的另一个交点坐标为(-1,0).
    由图象可知:的解集即是y<0的解集,
    ∴x<-1或x>1.故选D.
    5、D
    【解析】
    分析:根据主视图和俯视图之间的关系可以得出答案.
    详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
    点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
    6、D
    【解析】
    ①错误.由题意a>1.b>1,c<1,abc<1;
    ②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
    ③错误.抛物线与x轴的另一个交点是(1,1);
    ④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    【详解】
    解:∵抛物线开口向上,∴a>1,
    ∵抛物线交y轴于负半轴,∴c<1,
    ∵对称轴在y轴左边,∴- <1,
    ∴b>1,
    ∴abc<1,故①错误.
    ∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
    当ax2+bx+c<mx+n时,-3<x<-1;
    即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
    抛物线与x轴的另一个交点是(1,1),故③错误,
    ∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
    ∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    故选:D.
    【点睛】
    本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    7、B
    【解析】
    根据二次根式的性质,被开方数大于等于0,列不等式求解.
    【详解】
    根据题意得:x﹣1≥0,解得x≥1,
    则自变量x的取值范围是x≥1.
    故选B.
    【点睛】
    本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.
    8、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误.
    故选:C.
    点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9、A
    【解析】
    由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.
    10、B
    【解析】
    在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
    【详解】
    在这组数据中出现次数最多的是1.1,即众数是1.1.
    要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
    故选B.
    【点睛】
    本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x+1
    【解析】
    先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.
    【详解】
    解:
    =


    .
    故答案是:x+1.
    【点睛】
    本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
    12、4﹣π
    【解析】
    由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.
    【详解】
    解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,
    ∴AC=BC=AB•sin45°=AB=2,
    ∴S△ABC=AC•BC=4,
    ∵点D为AB的中点,
    ∴AD=BD=AB=2,
    ∴S扇形EAD=S扇形FBD=×π×22=π,
    ∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.
    故答案为:4﹣π.
    【点睛】
    此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.
    13、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    14、;
    【解析】
    设第一天走了x里,则第二天走了里,第三天走了里…第六天走了里,根据总路程为378里列出方程可得答案.
    【详解】
    解:设第一天走了x里, 则第二天走了里,第三天走了里…第六天走了里,
    依题意得:,
    故答案:.
    【点睛】
    本题主要考查由实际问题抽象出一元一次方程.
    15、﹣6 增大
    【解析】
    ∵反比例函数的图象经过点(﹣3,2),
    ∴2=,即k=2×(﹣3)=﹣6,
    ∴k<0,则y随x的增大而增大.
    故答案为﹣6;增大.
    【点睛】
    本题考查用待定系数法求反函数解析式与反比例函数的性质:
    (1)当k>0时,函数图象在一,三象限,在每个象限内,y随x的增大而减小;
    (2)当k<0时,函数图象在二,四象限,在每个象限内,y随x的增大而增大.
    16、1
    【解析】
    根据中位数的定义,结合图表信息解答即可.
    【详解】
    将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,
    则这八位女生的体重的中位数为=1kg,
    故答案为1.
    【点睛】
    本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.

    三、解答题(共8题,共72分)
    17、(1)
    (2)(0,-1)
    (3)(1,0)(9,0)
    【解析】
    (1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;
    (2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;
    (3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.
    【详解】
    解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,
    得 ,
    解得
    ∴y=x2−2x−3;
    (2)将点D(m,−m−1)代入y=x2−2x−3中,得
    m2−2m−3=−m−1,
    解得m=2或−1,
    ∵点D(m,−m−1)在第四象限,
    ∴D(2,−3),
    ∵直线BC解析式为y=x−3,
    ∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,
    ∴点D关于直线BC对称的点D'(0,−1);
    (3)存在.满足条件的点P有两个.
    ①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,
    ∵直线BD解析式为y=3x−9,
    ∵直线CP过点C,
    ∴直线CP的解析式为y=3x−3,
    ∴点P坐标(1,0),
    ②连接BD′,过点C作CP′∥BD′,交x轴于P′,
    ∴∠P′CB=∠D′BC,
    根据对称性可知∠D′BC=∠CBD,
    ∴∠P′CB=∠CBD,
    ∵直线BD′的解析式为
    ∵直线CP′过点C,
    ∴直线CP′解析式为,
    ∴P′坐标为(9,0),

    综上所述,满足条件的点P坐标为(1,0)或(9,0).
    【点睛】
    本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.
    18、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
    【解析】
    试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
    (3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
    (3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
    试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
    答:一次至少买1只,才能以最低价购买;
    (3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
    综上所述:;
    (3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
    ②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
    且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
    即出现了卖46只赚的钱比卖1只赚的钱多的现象.
    当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
    考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
    19、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
    【解析】
    (1)根据题意点R与点B重合时t+t=3,即可求出t的值;
    (2)根据题意运用t表示出PQ即可;
    (3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
    (3)根据等腰三角形的性质即可得出结论.
    【详解】
    解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
    ∴PQ=PR,∠QPR=90°,
    ∴△QPR为等腰直角三角形.
    当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
    ∵点R与点B重合,
    ∴AP+PR=t+t=AB=3,
    解得:t=.
    (2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
    ∵tanA=,
    ∴tanC=,sinC=,
    ∴PQ=CP•sinC=(9﹣t).
    (3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.

    ∵△KBR∽△QAR,
    ∴ =,
    ∴ =,
    ∴KM=(t﹣3)=t﹣,
    ∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
    ②如图2中,当3<t≤3时,重叠部分是四边形PQKB.

    S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
    ③如图3中,当3<t<9时,重叠部分是△PQK.

    S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
    (3)如图3中,

    ①当DC=DP1=3时,易知AP1=3,t=3.
    ②当DC=DP2时,CP2=2•CD•,
    ∴BP2=,
    ∴t=3+.
    ③当CD=CP3时,t=4.
    ④当CP3=DP3时,CP3=2÷,
    ∴t=9﹣=.
    综上所述,满足条件的t的值为3或或4或.
    【点睛】
    本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    20、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);当t=时,S△MDN的最大值为.
    【解析】
    (1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;
    (2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;
    (3)①由BC∥AD,得到∠DAB=∠CBA,全等只要当或时,△PBC∽△ABD,解方程组得D(4,−5),求得
    设P的坐标为(x,0),代入比例式解得或x=−4.5,即可得到或P(−4.5,0);
    ②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF 求得求得 由于于是得到即可得到结果.
    【详解】
    (1)由题意知:
    解得
    ∴二次函数的表达式为
    (2)在 中,令y=0,则
    解得:
    ∴B(3,0),
    由已知条件得直线BC的解析式为y=−x+3,
    ∵AD∥BC,
    ∴设直线AD的解析式为y=−x+b,
    ∴0=1+b,
    ∴b=−1,
    ∴直线AD的解析式为y=−x−1;
    (3)①∵BC∥AD,
    ∴∠DAB=∠CBA,
    ∴只要当:或时,△PBC∽△ABD,
    解得D(4,−5),

    设P的坐标为(x,0),
    即或
    解得或x=−4.5,
    ∴或P(−4.5,0),
    ②过点B作BF⊥AD于F,过点N作NE⊥AD于E,

    在Rt△AFB中,
    ∴sin∠BAF



    又∵





    ∴当时,的最大值为
    【点睛】
    属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.
    21、 (1)见解析;(2)DF=
    【解析】
    (1)直接利用等腰三角形的定义结合勾股定理得出答案;
    (2)利用直角三角的定义结合勾股定理得出符合题意的答案.
    【详解】
    (1)如图(1)所示:△ABE,即为所求;
    (2)如图(2)所示:△CDF即为所求,DF=.

    【点睛】
    此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.
    22、(1)证明见解析;(2)能;BE=1或;(3)
    【解析】
    (1)证明:∵AB=AC,
    ∴∠B=∠C,
    ∵△ABC≌△DEF,
    ∴∠AEF=∠B,
    又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
    ∴∠CEM=∠BAE,
    ∴△ABE∽△ECM;
    (2)能.
    ∵∠AEF=∠B=∠C,且∠AME>∠C,
    ∴∠AME>∠AEF,
    ∴AE≠AM;
    当AE=EM时,则△ABE≌△ECM,
    ∴CE=AB=5,
    ∴BE=BC−EC=6−5=1,
    当AM=EM时,则∠MAE=∠MEA,
    ∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
    又∵∠C=∠C,
    ∴△CAE∽△CBA,
    ∴,
    ∴CE=,
    ∴BE=6−=;
    ∴BE=1或;
    (3)解:设BE=x,
    又∵△ABE∽△ECM,
    ∴,即:,
    ∴CM=,
    ∴AM=5−CM,
    ∴当x=3时,AM最短为,
    又∵当BE=x=3=BC时,
    ∴点E为BC的中点,
    ∴AE⊥BC,
    ∴AE=,
    此时,EF⊥AC,
    ∴EM=,
    S△AEM=.
    23、(1);(2);(3).
    【解析】
    (1)将点代入二次函数解析式即可;
    (2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
    (3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
    【详解】
    解:(1)∵点在二次函数的图象上,

    解方程,得
    ∴二次函数的表达式为.
    (2)如图1,过点作轴,垂足为.






    在和中,
    ∵,

    ∵点的坐标为 ,


    (3)如图2,把沿轴正方向平移,

    当点落在抛物线上点处时,设点的坐标为.
    解方程得:(舍去)或
    由平移的性质知,且,
    ∴四边形为平行四边形,


    扫过区域的面积== .
    【点睛】
    本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
    24、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
    【解析】
    (1)根据题意得出小明的速度,进而得出得出小明离家的距离;
    (2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
    【详解】
    解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
    300×5=1500(米),
    ∴两人相遇时小明离家的距离为1500米;
    (2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
    设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
    1500+120(x﹣10)=4500﹣500,
    解得x=.
    答:小丽离距离图书馆500m时所用的时间为分.
    【点睛】
    本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.

    相关试卷

    陕西省西安市雁塔区高新一中达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份陕西省西安市雁塔区高新一中达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角板等内容,欢迎下载使用。

    陕西省西安市爱知中学2022年中考数学模拟试题含解析: 这是一份陕西省西安市爱知中学2022年中考数学模拟试题含解析,共19页。试卷主要包含了已知关于x的一元二次方程,某反比例函数的图象经过点,把a•的根号外的a移到根号内得,下面的几何体中,主,-2的倒数是等内容,欢迎下载使用。

    陕西西安市爱知中学2022年中考数学对点突破模拟试卷含解析: 这是一份陕西西安市爱知中学2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,当函数y=,下列各数中,最小的数是,2016的相反数是,如图是反比例函数等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map