![上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13580066/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13580066/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13580066/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析
展开
这是一份上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,在直角坐标系中,已知点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.方程的根是( )
A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
2.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
4.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
5.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
6.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )
A. B. C. D.
7.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是( )
A.30° B.60° C.90° D.45°
8.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是( )
A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a
9.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.AE=6cm B.
C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.
12.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.
13.已知a+ =3,则的值是_____.
14.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
15.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
16.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.
17.方程的解是_________.
三、解答题(共7小题,满分69分)
18.(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.
(1)求证:四边形ABDE是平行四边形;
(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.
19.(5分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
(1)判断四边形ACBD的形状,并说明理由;
(2)求证:ME=AD.
20.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
21.(10分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2,求EB的长.
22.(10分)下面是“作三角形一边上的高”的尺规作图过程.
已知:△ABC.
求作:△ABC的边BC上的高AD.
作法:如图2,
(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;
(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.
请回答:该尺规作图的依据是______.
23.(12分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
24.(14分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数,反比例函数的表达式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.
2、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形.故错误;
B.不是轴对称图形,也不是中心对称图形.故错误;
C.是轴对称图形,也是中心对称图形.故正确;
D.不是轴对称图形,是中心对称图形.故错误.
故选C.
【点睛】
掌握好中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
中心对称图形是要寻找对称中心,旋转180°后与原图重合.
3、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
4、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
5、A
【解析】
方程变形后,配方得到结果,即可做出判断.
【详解】
方程,
变形得:,
配方得:,即
故选A.
【点睛】
本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
6、D
【解析】
过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.
【详解】
过O作直线OE⊥AB,交CD于F,
∵AB//CD,
∴OF⊥CD,OE=12,OF=2,
∴△OAB∽△OCD,
∵OE、OF分别是△OAB和△OCD的高,
∴,即,
解得:CD=1.
故选D.
【点睛】
本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.
7、B
【解析】
【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
【详解】∵∠BAC=30°,
∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
故选B.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8、D
【解析】
根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.
【详解】
由数轴上的位置可得,a0, 0
相关试卷
这是一份上海市静安区名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了答题时请按要求用笔,运用乘法公式计算,函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份2022年浙江省平阳县市级名校毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了答题时请按要求用笔,方程x2+2x﹣3=0的解是等内容,欢迎下载使用。
这是一份安徽省无为市市级名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了计算3–,二次函数y=ax2+bx+c,已知电流I等内容,欢迎下载使用。