上海市文来中学2022年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.a的倒数是3,则a的值是( )
A. B.﹣ C.3 D.﹣3
2.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
A. B.
C. D.
3.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是( )
A.9 B.11 C.13 D.11或13
4.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( )
A.216000米 B.0.00216米
C.0.000216米 D.0.0000216米
5.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是( )
A. B. C. D.
6.若一个多边形的内角和为360°,则这个多边形的边数是( )
A.3 B.4 C.5 D.6
7.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A.8或10 B.8 C.10 D.6或12
8.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
9.sin45°的值等于( )
A. B.1 C. D.
10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.
12.的相反数是______,的倒数是______.
13.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.
14.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:
①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2.
其中正确的是_____.(把你认为正确结论的序号都填上)
15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
16.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).
17.如图,点M是反比例函数(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为
A.1 B.2 C.4 D.不能确定
三、解答题(共7小题,满分69分)
18.(10分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
(1)请写出两个“关于轴对称的二次函数”;
(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
19.(5分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
20.(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,
)
21.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
22.(10分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=______,连接OF;
(3)在CD边上取点G,使CG=______,连接OG;
(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
23.(12分)计算:
24.(14分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据倒数的定义进行解答即可.
【详解】
∵a的倒数是3,∴3a=1,解得:a=.
故选A.
【点睛】
本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.
2、C
【解析】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
考点:由实际问题抽象出分式方程.
3、C
【解析】
试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.
解方程x2-6x+8=0得x=2或x=4
当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形
当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13
故选C.
考点:解一元二次方程,三角形的三边关系
点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.
4、B
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
2.16×10﹣3米=0.00216米.
故选B.
【点睛】
考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
5、B
【解析】
从几何体的正面看可得下图,故选B.
6、B
【解析】
利用多边形的内角和公式求出n即可.
【详解】
由题意得:(n-2)×180°=360°,
解得n=4;
故答案为:B.
【点睛】
本题考查多边形的内角和,解题关键在于熟练掌握公式.
7、C
【解析】
试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
综上所述,它的周长是4.故选C.
考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
8、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
9、D
【解析】
根据特殊角的三角函数值得出即可.
【详解】
解:sin45°=,
故选:D.
【点睛】
本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
10、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、(7+6)
【解析】
过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
【详解】
解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE= (m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.
【点睛】
本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.
12、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
13、1
【解析】
解:连接OC,
∵AB为⊙O的直径,AB⊥CD,
∴CE=DE=CD=×6=3,
设⊙O的半径为xcm,
则OC=xcm,OE=OB﹣BE=x﹣1,
在Rt△OCE中,OC2=OE2+CE2,
∴x2=32+(x﹣1)2,
解得:x=1,
∴⊙O的半径为1,
故答案为1.
【点睛】
本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.
14、①②④
【解析】
①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到 ,可以判断①;
②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;
③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;
④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH== ,可以求得其最小值,可以判断④.
【详解】
解:①如图所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE与△COF中,
,
∴△BOE≌△COF,
∴BE=CF,
∴ ,①正确;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正确.
③如图所示,
∵△HOM≌△GON,
∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
设BG=x,则BH=4-x,
则GH==,
∴其最小值为4+2,④正确.
故答案为:①②④
【点睛】
考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.
15、k≥﹣1
【解析】
分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
∴△=12-1×1×(-k)=16+1k≥0,
解得:k≥-1.
故答案为k≥-1.
点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
16、y=x2+2x(答案不唯一).
【解析】
设此二次函数的解析式为y=ax(x+2),令a=1即可.
【详解】
∵抛物线过点(0,0),(﹣2,0),
∴可设此二次函数的解析式为y=ax(x+2),
把a=1代入,得y=x2+2x.
故答案为y=x2+2x(答案不唯一).
【点睛】
本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.
17、A
【解析】
可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解.
【详解】
设M的坐标是(m,n),则mn=2.
则MN=m,的MN边上的高等于n.
则的面积
故选A.
【点睛】
考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.
三、解答题(共7小题,满分69分)
18、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
【解析】
(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
(2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
【详解】
解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函数y1+y2的顶点坐标为(0,2c).
【点睛】
本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
19、 (1)600人(2)
【解析】
(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;
(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.
【详解】
(1)(人),∴最喜欢方式A的有600人
(2)列表法:
A
B
C
A
A,A
A,B
A,C
B
B,A
B,B
B,C
C
C,A
C,B
C,C
树状法:
∴(同一种购票方式)
【点睛】
本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
20、解:设OC=x,
在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.
在Rt△BOC中,∵∠BCO=30°,∴.
∵AB=OA﹣OB=,解得.
∴OC=5米.
答:C处到树干DO的距离CO为5米.
【解析】
解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.
【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.
21、(1);(2).
【解析】
(1)直接根据概率公式求解;
(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
【详解】
(1)正数为2,所以该球上标记的数字为正数的概率为;
(2)画树状图为:
共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
22、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
【解析】
利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
【详解】
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=3,连接OF;
(3)在CD边上取点G,使CG=2,连接OG;
(4)在DA边上取点H,使DH=1,连接OH.
由于AE=EB+BF=FC+CG=GD+DH=HA.
可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
【点睛】
此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.
23、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
24、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
【解析】
(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;
(2)根据点B的坐标画出平面直角坐标系;
(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.
【详解】
(1)△A如图所示;
(2)如图所示,A(0,1),C(﹣3,1);
(3)△如图所示,(3,﹣5),(3,﹣1).
上海市文来中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份上海市文来中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
上海市文来中学2022年中考数学全真模拟试题含解析: 这是一份上海市文来中学2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的倒数的绝对值是,如图,将函数y=,下列事件中为必然事件的是等内容,欢迎下载使用。
2022年上海市市西初级中学中考数学押题卷含解析: 这是一份2022年上海市市西初级中学中考数学押题卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,不等式的最小整数解是,下列计算正确的是等内容,欢迎下载使用。