|试卷下载
搜索
    上传资料 赚现金
    上海市松江区名校2022年中考数学模试卷含解析
    立即下载
    加入资料篮
    上海市松江区名校2022年中考数学模试卷含解析01
    上海市松江区名校2022年中考数学模试卷含解析02
    上海市松江区名校2022年中考数学模试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市松江区名校2022年中考数学模试卷含解析

    展开
    这是一份上海市松江区名校2022年中考数学模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列说法错误的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
    A. B. C. D.
    2.在△ABC中,∠C=90°,sinA=,则tanB等于(   )
    A. B.
    C. D.
    3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为  
    A. B.
    C. D.
    4.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是  
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.

    A. B. C. D.
    5.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    6.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )
    A. B. C. D.
    7.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(  )
    A.﹣1 B.3 C.﹣3 D.1
    8.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是(  )
    A.(1,1) B.(,) C.(1,3) D.(1,)
    9.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
    A.向左平移1个单位 B.向右平移3个单位
    C.向上平移3个单位 D.向下平移1个单位
    10.下列说法错误的是( )
    A.必然事件的概率为1
    B.数据1、2、2、3的平均数是2
    C.数据5、2、﹣3、0的极差是8
    D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)

    12.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.

    13.已知直线与抛物线交于A,B两点,则_______.
    14.化简:÷(﹣1)=_____.
    15.已知a+ =3,则的值是_____.
    16.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
    证明:∽;
    若,求的值;
    如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.

    18.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
    (1)这项被调查的总人数是多少人?
    (2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
    (3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    19.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
    (1)求证:AB为⊙C的切线.
    (2)求图中阴影部分的面积.

    20.(8分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.
    21.(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)
    大江东去浪淘尽,千古风流数人物;
    而立之年督东吴,早逝英年两位数;
    十位恰小个位三,个位平方与寿符;
    哪位学子算得快,多少年华属周瑜?
    22.(10分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)

    23.(12分)如图,已知AB是⊙O的弦,C是 的中点,AB=8,AC= ,求⊙O半径的长.

    24.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
    (1)求证:ED为⊙O的切线;
    (2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
    【详解】
    设绳子长x尺,木条长y尺,依题意有

    故选A.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
    2、B
    【解析】
    法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
    法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
    3、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    4、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.
    5、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    6、D
    【解析】
    根据中心对称图形的定义解答即可.
    【详解】
    选项A不是中心对称图形;
    选项B不是中心对称图形;
    选项C不是中心对称图形;
    选项D是中心对称图形.
    故选D.
    【点睛】
    本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.
    7、B
    【解析】
    把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
    【详解】
    解:∵若,是一元二次方程的两个不同实数根,
    ∴,


    故选B.
    【点睛】
    本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.
    8、B
    【解析】
    根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.
    【详解】
    A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,
    B选项(,) 到坐标原点的距离为=2,因此点在圆上,
    C选项 (1,3) 到坐标原点的距离为>2,因此点在圆外
    D选项(1,) 到坐标原点的距离为<2,因此点在圆内,
    故选B.
    【点睛】
    本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.
    9、D
    【解析】
    A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
    B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
    C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
    D.平移后,得y=x2−1图象不经过A点,故D符合题意;
    故选D.
    10、D
    【解析】
    试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
    B.数据1、2、2、3的平均数是=2,本项正确;
    C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
    D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
    故选D.
    考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长.
    【详解】
    如图,作,,垂足分别为点E,F,则四边形是矩形.
    由题意得,米,米,,斜坡的坡度为1∶2,
    在中,∵,
    ∴米.
    在Rt△DCF中,∵斜坡的坡度为1∶2,
    ∴,
    ∴米,
    ∴(米).
    ∴坝底的长度等于米.

    故答案为.
    【点睛】
    此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.
    12、80°
    【解析】
    根据平行线的性质求出∠4,根据三角形内角和定理计算即可.
    【详解】
    解:

    ∵a∥b,
    ∴∠4=∠l=60°,
    ∴∠3=180°-∠4-∠2=80°,
    故答案为:80°.
    【点睛】
    本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
    13、
    【解析】
    将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x +x =- = ,xx= =-1”,将原代数式通分变形后代入数据即可得出结论.
    【详解】
    将代入到中得,,整理得,,∴,,
    ∴.
    【点睛】
    此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式
    14、﹣.
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式


    .
    故答案为:.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    15、7
    【解析】
    根据完全平方公式可得:原式=.
    16、2
    【解析】
    试题分析:当x+3≥﹣x+1,
    即:x≥﹣1时,y=x+3,
    ∴当x=﹣1时,ymin=2,
    当x+3<﹣x+1,
    即:x<﹣1时,y=﹣x+1,
    ∵x<﹣1,
    ∴﹣x>1,
    ∴﹣x+1>2,
    ∴y>2,
    ∴ymin=2,

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2);(3).
    【解析】
    由余角的性质可得,即可证∽;
    由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
    由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
    【详解】
    证明:,

    又,


    又,

    ∽,

    又,,


    如图,延长AD与BG的延长线交于H点




    ,由可知≌


    代入上式可得,
    ∽,
    ,,

    ,,
    平分
    又平分,

    是等腰直角三角形.
    ∴.
    【点睛】
    本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
    18、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    19、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;

    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
    20、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
    【解析】
    (1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;
    (2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.
    【详解】
    解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,
    ∴h=1,
    把原点坐标代入y=(x﹣1)2+k,得,
    (2﹣1)2+k=2,
    解得k=﹣1;
    (2)∵抛物线y=(x﹣1)2+k与x轴有公共点,
    ∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,
    ∴k≤2.
    当x=﹣1时,y=4+k;当x=2时,y=1+k,
    ∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,
    ∴4+k>2且1+k<2,解得﹣4<k<﹣1,
    综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
    【点睛】
    抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.
    21、周瑜去世的年龄为16岁.
    【解析】
    设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.
    【详解】
    设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;
    10(x﹣1)+x=x2,
    解得:x1=5,x2=6
    当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;
    当x=6时,周瑜年龄为16岁,完全符合题意.
    答:周瑜去世的年龄为16岁.
    【点睛】
    本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.
    22、 (10-4)米
    【解析】
    延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.
    【详解】
    解:如图,延长OC,AB交于点P.
    ∵∠ABC=120°,
    ∴∠PBC=60°,
    ∵∠OCB=∠A=90°,
    ∴∠P=30°,
    ∵AD=20米,
    ∴OA=AD=10米,
    ∵BC=2米,
    ∴在Rt△CPB中,PC=BC•tan60°=米,PB=2BC=4米,
    ∵∠P=∠P,∠PCB=∠A=90°,
    ∴△PCB∽△PAO,
    ∴,
    ∴PA===米,
    ∴AB=PA﹣PB=()米.
    答:路灯的灯柱AB高应该设计为()米.

    23、5
    【解析】
    试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,
    在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.
    试题解析:连接OC交AB于D,连接OA,
    由垂径定理得OD垂直平分AB,
    设⊙O的半径为r,
    在△ACD中,CD2+AD2=AC2,CD=2,
    在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,
    解得r=5,
    ∴☉O的半径为5.

    24、(1)见解析;(2)△ADF的面积是.
    【解析】
    试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
    (2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.
    试题解析:
    (1)证明:连接OD,CD,

    ∵AC是⊙O的直径,
    ∴∠CDA=90°=∠BDC,
    ∵OE∥AB,CO=AO,
    ∴BE=CE,
    ∴DE=CE,
    ∵在△ECO和△EDO中

    ∴△ECO≌△EDO,
    ∴∠EDO=∠ACB=90°,
    即OD⊥DE,OD过圆心O,
    ∴ED为⊙O的切线.
    (2)过O作OM⊥AB于M,过F作FN⊥AB于N,

    则OM∥FN,∠OMN=90°,
    ∵OE∥AB,
    ∴四边形OMFN是矩形,
    ∴FN=OM,
    ∵DE=4,OC=3,由勾股定理得:OE=5,
    ∴AC=2OC=6,
    ∵OE∥AB,
    ∴△OEC∽△ABC,
    ∴,
    ∴,
    ∴AB=10,
    在Rt△BCA中,由勾股定理得:BC==8,
    sin∠BAC=,
    即 ,
    OM==FN,
    ∵cos∠BAC=,
    ∴AM=
    由垂径定理得:AD=2AM=,
    即△ADF的面积是AD×FN=××=.
    答:△ADF的面积是.
    【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.

    相关试卷

    上海市松江区中考数学一模试卷: 这是一份上海市松江区中考数学一模试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年上海市松江区中考数学二模试卷(含解析): 这是一份2023年上海市松江区中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年上海市松江区中考数学一模试卷(含答案解析): 这是一份2023年上海市松江区中考数学一模试卷(含答案解析),共21页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map