终身会员
搜索
    上传资料 赚现金
    上海市长宁、金山区2022年中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    上海市长宁、金山区2022年中考数学考试模拟冲刺卷含解析01
    上海市长宁、金山区2022年中考数学考试模拟冲刺卷含解析02
    上海市长宁、金山区2022年中考数学考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市长宁、金山区2022年中考数学考试模拟冲刺卷含解析

    展开
    这是一份上海市长宁、金山区2022年中考数学考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,九年级,如图,已知,用尺规作图作等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是  

    A. B. C. D.
    2.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    3.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为(  )

    A. B. C. D.
    4.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )

    A. B. C. D.
    5.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )

    A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    6.若关于x、y的方程组有实数解,则实数k的取值范围是(  )
    A.k>4 B.k<4 C.k≤4 D.k≥4
    7.如图,在中,,,,点分别在上,于,则的面积为( )

    A. B. C. D.
    8.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )

    A.4 B.3 C. D.
    9.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )

    A.45° B.85° C.90° D.95°
    10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    11.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为(  )

    A.π B.π C.6﹣π D.2﹣π
    12.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )
    A.1.2(1+x)=2.5
    B.1.2(1+2x)=2.5
    C.1.2(1+x)2=2.5
    D.1.2(1+x)+1.2(1+x)2=2.5
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个凸多边形的内角和与外角和相等,它是______边形.
    14.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.
    15.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
    16.已知函数,当 时,函数值y随x的增大而增大.
    17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.

    18.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
    分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
    20.(6分)已知抛物线的开口向上顶点为P
    (1)若P点坐标为(4,一1),求抛物线的解析式;
    (2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
    (3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
    21.(6分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)

    22.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
    (1)求该抛物线的函数表达式;
    (2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
    (3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.

    23.(8分)先化简,再求值:(1+)÷,其中x=+1.
    24.(10分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,,)

    25.(10分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.
    (1)求该一次函数表达式;
    (2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.
    26.(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
    27.(12分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
    (1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
    (2)分别求出这两个投资方案的最大年利润;
    (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.
    【详解】
    A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;
    B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;
    C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;
    D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.
    故选C.
    【点睛】
    本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.
    2、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    3、D
    【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
    点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
    4、C
    【解析】
    试题分析:由题意可得,
    第一小组对应的圆心角度数是:×360°=72°,
    故选C.
    考点:1.扇形统计图;2.条形统计图.
    5、D
    【解析】
    根据作一个角等于已知角的作法即可得出结论.
    【详解】
    解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
    第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
    故选:D.
    【点睛】
    本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.
    6、C
    【解析】
    利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.
    【详解】
    解:∵xy=k,x+y=4,
    ∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.

    解不等式得

    故选:C.
    【点睛】
    本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.
    7、C
    【解析】
    先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;
    【详解】
    ∵,
    ∴CQ=4m,BP=5m,
    在Rt△ABC中,sinB=,tanB=,
    如图2,过点P作PE⊥BC于E,

    在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,
    ∴,
    ∴BE=4m,CE=BC-BE=8-4m,
    同(1)的方法得,∠1=∠3,
    ∵∠ACQ=∠CEP,
    ∴△ACQ∽△CEP,
    ∴ ,
    ∴ ,
    ∴m=,
    ∴PE=3m=,
    ∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6- )=,故选C.
    【点睛】
    本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.
    8、C
    【解析】
    设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
    【详解】
    设I的边长为x
    根据题意有
    解得或(舍去)
    故选:C.
    【点睛】
    本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
    9、B
    【解析】
    解:∵AC是⊙O的直径,∴∠ABC=90°,
    ∵∠C=50°,∴∠BAC=40°,
    ∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,
    ∴∠CAD=∠DBC=45°,
    ∴∠BAD=∠BAC+∠CAD=40°+45°=85°,
    故选B.
    【点睛】
    本题考查圆周角定理;圆心角、弧、弦的关系.
    10、B
    【解析】
    试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴b>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2﹣4ac>0,
    而a<0,
    ∴<0,所以②错误;
    ∵C(0,c),OA=OC,
    ∴A(﹣c,0),
    把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
    ∴ac﹣b+1=0,所以③正确;
    设A(x1,0),B(x2,0),
    ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
    ∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
    ∴x1•x2=,
    ∴OA•OB=﹣,所以④正确.
    故选B.
    考点:二次函数图象与系数的关系.
    11、C
    【解析】
    根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
    【详解】
    由题意可得,
    BC=CD=4,∠DCB=90°,
    连接OE,则OE=BC,

    ∴OE∥DC,
    ∴∠EOB=∠DCB=90°,
    ∴阴影部分面积为:
    =
    =6-π,
    故选C.
    【点睛】
    本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    12、C
    【解析】
    试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:
    1.2(1+x)2=2.5,
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、四
    【解析】
    任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:设边数为n,根据题意,得
    (n-2)•180=360,
    解得n=4,则它是四边形.
    故填:四.
    【点睛】
    此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
    14、a>1 
    【解析】
    根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,
    故答案为a>1.
    15、y=﹣1x+1.
    【解析】
    由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
    【详解】
    ∵点P(1,2)关于x轴的对称点为P′,
    ∴P′(1,﹣2),
    ∵P′在直线y=kx+3上,
    ∴﹣2=k+3,解得:k=﹣1,
    则y=﹣1x+3,
    ∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
    故答案为y=﹣1x+1.
    考点:一次函数图象与几何变换.
    16、x≤﹣1.
    【解析】
    试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.
    考点:二次函数的性质.
    17、1
    【解析】
    作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
    ∵∠C=90°,AC=BC=6cm,
    ∴△ABC为直角三角形,
    ∴∠A=∠B=45°,
    ∴△APE和△PBD为等腰直角三角形,
    ∴PE=AE=AP=tcm,BD=PD,
    ∴CE=AC﹣AE=(6﹣t)cm,
    ∵四边形PECD为矩形,
    ∴PD=EC=(6﹣t)cm,
    ∴BD=(6﹣t)cm,
    ∴QD=BD﹣BQ=(6﹣1t)cm,
    在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
    在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
    ∵四边形QPCP′为菱形,
    ∴PQ=PC,
    ∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
    ∴t1=1,t1=6(舍去),
    ∴t的值为1.
    故答案为1.

    【点睛】
    此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
    18、﹣1
    【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
    【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
    整理得k2+1k=0,解得k1=0,k2=﹣1,
    因为k≠0,
    所以k的值为﹣1.
    故答案为:﹣1.
    【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)抛物线的解析式是.直线AB的解析式是.
    (2) .
    (3)P点的横坐标是或.
    【解析】
    (1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
    (2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
    当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
    (3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
    【详解】
    解:(1)把A(3,0)B(0,-3)代入,得
    解得
    所以抛物线的解析式是.
    设直线AB的解析式是,把A(3,0)B(0,)代入,得
    解得
    所以直线AB的解析式是.
    (2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
    ==.
    (3)若存在,则可能是:
    ①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
    ②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
    ③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
    ①,所以P点的横坐标是.
    所以P点的横坐标是或.
    20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
    【解析】
    (1)将P(4,-1)代入,可求出解析式
    (2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
    (3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
    【详解】
    解:(1)由此抛物线顶点为P(4,-1),
    所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
    所以抛物线解析式为:;
    (2)由此抛物线经过点C(4,-1),
    所以 一1=16a+4b+3,即b=-4a-1.
    因为抛物线的开口向上,则有
    其对称轴为直线,而
    所以当-1≤x≤2时,y随着x的增大而减小
    当x=-1时,y=a+(4a+1)+3=4+5a
    当x=2时,y=4a-2(4a+1)+3=1-4a
    所以当-1≤x≤2时,1-4a≤y≤4+5a;
    (3)当a=1时,抛物线的解析式为y=x2+bx+3
    ∴抛物线的对称轴为直线
    由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
    分别代入可得,当x=0时,y=3
    当x=1时,y=b+4
    当x=-时,y=-+3
    ①当一<0,即b>0时,3≤y≤b+4,
    由b+4=6解得b=2
    ②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
    由b+4=6解得b=2(舍去);
    ③当 ,即b<-2时,b+4≤y≤3,
    由b+4=-6解得b=-10
    综上,b=2或-10
    【点睛】
    本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
    21、(1)证明见解析 (2)﹣6π
    【解析】
    (1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
    (2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
    【详解】
    (1)证明:连接OD,
    ∵D为弧BC的中点,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠BAD=∠ADO,
    ∴∠CAD=∠ADO,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
    ∴OD⊥EF,
    ∴EF为半圆O的切线;
    (2)解:连接OC与CD,
    ∵DA=DF,
    ∴∠BAD=∠F,
    ∴∠BAD=∠F=∠CAD,
    又∵∠BAD+∠CAD+∠F=90°,
    ∴∠F=30°,∠BAC=60°,
    ∵OC=OA,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,∠COB=120°,
    ∵OD⊥EF,∠F=30°,
    ∴∠DOF=60°,
    在Rt△ODF中,DF=6,
    ∴OD=DF•tan30°=6,
    在Rt△AED中,DA=6,∠CAD=30°,
    ∴DE=DA•sin30°=3,EA=DA•cos30°=9,
    ∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
    由CO=DO,
    ∴△COD是等边三角形,
    ∴∠OCD=60°,
    ∴∠DCO=∠AOC=60°,
    ∴CD∥AB,
    故S△ACD=S△COD,
    ∴S阴影=S△AED﹣S扇形COD==.

    【点睛】
    此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
    22、(1)y=x2+2x﹣3;(2);(3)详见解析.
    【解析】
    试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
    (2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
    (3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
    试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
    ∴B(-3,0),
    设抛物线的表达式为y=a(x+3)(x-1),
    将点D(-4,5)代入,得5a=5,解得a=1,
    ∴抛物线的表达式为y=x2+2x-3;
    (2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.

    设点E(m,m2+2m-3),则F(m,-m+1).
    ∴EF=-m+1-m2-2m+3=-m2-3m+4.
    ∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
    ∴△ACE的面积的最大值为;
    (3)当AD为平行四边形的对角线时:
    设点M的坐标为(-1,a),点N的坐标为(x,y).
    ∴平行四边形的对角线互相平分,
    ∴=,=,
    解得x=-2,y=5-a,
    将点N的坐标代入抛物线的表达式,得5-a=-3,
    解得a=8,
    ∴点M的坐标为(-1,8),
    当AD为平行四边形的边时:
    设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
    ∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
    ∴M(-1,16),
    将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
    ∴M(-1,26),
    综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
    23、,1+
    【解析】
    运用公式化简,再代入求值.
    【详解】
    原式=

    = ,
    当x=+1时,
    原式=.
    【点睛】
    考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.
    24、1.4米.
    【解析】
    过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.
    【详解】
    过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,
    ∵AB=CD,AB+CD=AD=2,
    ∴AB=CD=1,
    在Rt△ABE中,AB=1,∠A=37°,
    ∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,
    在Rt△CDF中,CD=1,∠D=45°,
    ∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,
    ∵BE⊥AD,CF⊥AD,
    ∴BE∥CM,
    又∵BE=CM,
    ∴四边形BEMC为平行四边形,
    ∴BC=EM,CM=BE.
    在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,
    ∴EM=≈1.4,
    ∴B与C之间的距离约为1.4米.

    【点睛】
    本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.
    25、(1);(2).
    【解析】
    (1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;
    (2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.
    【详解】
    解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,
    ∵直线过点M(4,7),
    ∴8+b=7,解得b=-1,
    ∴一次函数的解析式为:y=2x-1;
    (2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,
    又∵点Q在直线的下方,如图,
    ∴2x-1<3x+2,
    解得x>-3.

    【点睛】
    本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.
    26、不公平
    【解析】
    【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
    【详解】根据题意列表如下:

    1
    2
    3
    1
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (1,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (1,3)
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
    ∴P(甲获胜)=,P(乙获胜)=1﹣=,
    则该游戏不公平.
    【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
    27、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.
    【解析】
    (1)根据题意直接得出y1与y2与x的函数关系式即可;
    (2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;
    (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.
    【详解】
    解:(1)由题意得:
    y1=(120﹣a)x(1≤x≤125,x为正整数),
    y2=100x﹣0.5x2(1≤x≤120,x为正整数);
    (2)①∵40<a<100,∴120﹣a>0,
    即y1随x的增大而增大,
    ∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)
    ②y2=﹣0.5(x﹣100)2+10,
    ∵a=﹣0.5<0,
    ∴x=100时,y2最大值=10(万元);
    (3)∵由110﹣125a>10,
    ∴a<80,
    ∴当40<a<80时,选择方案一;
    由110﹣125a=10,得a=80,
    ∴当a=80时,选择方案一或方案二均可;
    由110﹣125a<10,得a>80,
    ∴当80<a<100时,选择方案二.
    考点:二次函数的应用.

    相关试卷

    上海市长宁、金山区重点名校2022年中考数学全真模拟试题含解析: 这是一份上海市长宁、金山区重点名校2022年中考数学全真模拟试题含解析,共23页。

    上海市浦东区重点中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份上海市浦东区重点中学2021-2022学年中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了计算x﹣2y﹣等内容,欢迎下载使用。

    2022年上海市文达校中考数学考试模拟冲刺卷含解析: 这是一份2022年上海市文达校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,单项式2a3b的次数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map