四川省成都东辰国际校2022年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.化简:-,结果正确的是( )
A.1 B. C. D.
2.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )
A. B. C. D.
3.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
A. B. C. D.
4.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
6.一个几何体的三视图如图所示,这个几何体是( )
A.三菱柱 B.三棱锥 C.长方体 D.圆柱体
7.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
A. B. C. D.
8.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=( )
A.30° B.40° C.50° D.60°
9.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是( )
A. B. C. D.
10.﹣3的绝对值是( )
A.﹣3 B.3 C.- D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.
12.的相反数是_____,倒数是_____,绝对值是_____
13.若关于x的方程有两个相等的实数根,则m的值是_________.
14.函数中,自变量的取值范围是______
15.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.
16.已知点A,B的坐标分别为(﹣2,3)、(1,﹣2),将线段AB平移,得到线段A′B′,其中点A与点A′对应,点B与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________.
三、解答题(共8题,共72分)
17.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.
18.(8分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
(1)求证:△ACM∽△ABE.
(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.
19.(8分)在平面直角坐标系 xOy 中,抛物线 y=ax2﹣4ax+3a﹣2(a≠0)与 x轴交于 A,B 两(点 A 在点 B 左侧).
(1)当抛物线过原点时,求实数 a 的值;
(2)①求抛物线的对称轴;
②求抛物线的顶点的纵坐标(用含 a 的代数式表示);
(3)当 AB≤4 时,求实数 a 的取值范围.
20.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
21.(8分)先化简,再求值:(),其中=
22.(10分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.
解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.
23.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
天数(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,
设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
24.解方程组
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
2、C
【解析】
看到的棱用实线体现.故选C.
3、A
【解析】
根据轴对称图形的概念求解.
解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
故选A.
“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
4、C
【解析】
根据平行线性质和全等三角形的判定定理逐个分析.
【详解】
由,得∠B=∠D,
因为,
若≌,则还需要补充的条件可以是:
AB=DE,或∠E=∠A, ∠EFD=∠ACB,
故选C
【点睛】
本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
5、D
【解析】
设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
6、A
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
故选:B.
【点睛】
此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
7、D
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
【详解】
解:6 590 000=6.59×1.
故选:D.
【点睛】
本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
8、D
【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.
点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.
9、B
【解析】
试题解析:由图可知可以瞄准的点有2个.
.
∴B球一次反弹后击中A球的概率是.
故选B.
10、B
【解析】
根据负数的绝对值是它的相反数,可得出答案.
【详解】
根据绝对值的性质得:|-1|=1.
故选B.
【点睛】
本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可.
【详解】
解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,
所以恰好选到经过西流湾大桥的路线的概率=.
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
12、 ,
【解析】
∵只有符号不同的两个数是互为相反数,
∴的相反数是;
∵乘积为1的两个数互为倒数,
∴的倒数是;
∵负数得绝对值是它的相反数,
∴绝对值是
故答案为(1). (2). (3).
13、m=-
【解析】
根据题意可以得到△=0,从而可以求得m的值.
【详解】
∵关于x的方程有两个相等的实数根,
∴△=,
解得:.
故答案为.
14、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
15、(0,).
【解析】
试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.
16、(5,﹣8)
【解析】
各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B′的坐标.
【详解】
由A(-2,3)的对应点A′的坐标为(2,-13),
坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,
∴点B′的横坐标为1+4=5;纵坐标为-2-6=-8;
即所求点B′的坐标为(5,-8).
故答案为(5,-8)
【点睛】
此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
三、解答题(共8题,共72分)
17、(1);(2),见解析.
【解析】
(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;
(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.
【详解】
解:(1)∵四只鞋子中右脚鞋有2只,
∴随手拿出一只,恰好是右脚鞋的概率为=,
故答案为:;
(2)画树状图如下:
共有12种等可能的结果,其中两只恰好为一双的情况有4种,
∴拿出两只,恰好为一双的概率为=.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
18、(1)证明见解析;(2)证明见解析;(3)74.
【解析】
(1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
(2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
【详解】
(1)证明:∵四边形ABCD和四边形AEMN都是正方形,
∴,∠CAB=∠MAC=45°,
∴∠CAB-∠CAE=∠MAC-∠CAE,
∴∠BAE=∠CAM,
∴△ACM∽△ABE.
(2)证明:连结AC
因为△ACM∽△ABE,则∠ACM=∠B=90°,
因为∠ACB=∠ECF=45°,
所以∠ACM+∠ACB+∠ECF=180°,
所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
所以BD平行MF,
又因为MC=BE,FC=CE,
所以MF=BC=BD,
所以四边形BFMD是平行四边形
(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
=62+42+(2+6)4+ 26
=74.
【点睛】
本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
19、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为 a<﹣2 或 a≥.
【解析】
(1)把原点坐标代入 y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设 A(m,1),B(n,1),利用抛物线与 x 轴的交点问题,则 m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得 a>1 或 a<﹣2,再利用根与系数的关系得到 m+n=4,mn= ,然后根据完全平方公式利用 n﹣m≤4 得到(m+n)2﹣4mn≤16,所以 42﹣4•≤16,接着解关于a 的不等式,最后确定a的范围.
【详解】
(1)把(1,1)代入 y=ax2﹣4ax+3a﹣2 得 3a﹣2=1,解得 a=;
(2)①y=a(x﹣2)2﹣a﹣2, 抛物线的对称轴为直线 x=2;
②抛物线的顶点的纵坐标为﹣a﹣2;
(3)设 A(m,1),B(n,1),
∵m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,
∴△=16a2﹣4a(3a﹣2)>1,解得 a>1 或 a<﹣2,
∴m+n=4,mn=, 而 n﹣m≤4,
∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,
∴42﹣4• ≤16,
即≥1,解得 a≥或 a<1.
∴a 的范围为 a<﹣2 或 a≥.
【点睛】
本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax2+bx+c(a,b,c 是常数,a≠1)与 x 轴的交点坐标问题转化为解关于 x 的一元二次方程.也考查了二次函数的性质.
20、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
21、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
22、(1)7x1+4x+4;(1)55.
【解析】
(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;
(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.
【详解】
解:
(1)纸片①上的代数式为:
(4x1+5x+6)+(3x1﹣x﹣1)
=4x1+5x+6+3x1-x-1
=7x1+4x+4
(1)解方程:1x=﹣x﹣9,解得x=﹣3
代入纸片①上的代数式得
7x1+4x+4
=7×(-3)²+4×(-3)+4
=63-11+4=55
即纸片①上代数式的值为55.
【点睛】
本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.
23、(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.
【解析】
(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.
【详解】
(1)设p与x之间的函数关系式为p=kx+b,则有
,解得,,
即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),
当1≤x<10时,
W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,
当10≤x≤15时,
W=[20﹣(0.5x+7)]×40=﹣20x+520,
即W=;
(2)当1≤x<10时,
W=﹣x2+16x+260=﹣(x﹣8)2+324,
∴当x=8时,W取得最大值,此时W=324,
当10≤x≤15时,
W=﹣20x+520,
∴当x=10时,W取得最大值,此时W=320,
∵324>320,
∴李师傅第8天创造的利润最大,最大利润是324元;
(3)当1≤x<10时,
令﹣x2+16x+260=299,得x1=3,x2=13,
当W>299时,3<x<13,
∵1≤x<10,
∴3<x<10,
当10≤x≤15时,
令W=﹣20x+520>299,得x<11.05,
∴10≤x≤11,
由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),
即李师傅共可获得160元奖金.
【点睛】
本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.
24、
【解析】
将②×3,再联立①②消未知数即可计算.
【详解】
解:
②得: ③
①+③得:
把代入③得
∴方程组的解为
【点睛】
本题考查二元一次方程组解法,关键是掌握消元法.
四川省成都东辰国际学校2023-2024学年数学八上期末调研试题含答案: 这是一份四川省成都东辰国际学校2023-2024学年数学八上期末调研试题含答案,共7页。试卷主要包含了点P,下列各式为分式的是等内容,欢迎下载使用。
四川省绵阳市东辰国际校2022年中考押题数学预测卷含解析: 这是一份四川省绵阳市东辰国际校2022年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,的值是等内容,欢迎下载使用。
2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析: 这是一份2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,如图,AB∥CD,那么,|﹣3|的值是等内容,欢迎下载使用。