


四川省成都市高新南区重点名校2021-2022学年中考押题数学预测卷含解析
展开
这是一份四川省成都市高新南区重点名校2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了有以下图形,下面说法正确的个数有等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )
A.0.334 B. C. D.
2.下列因式分解正确的是
A. B.
C. D.
3.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是( )
A. B. C. D.
4.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
5.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
6.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
7.下面说法正确的个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
④如果∠A=∠B=∠C,那么△ABC是直角三角形;
⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
A.3个 B.4个 C.5个 D.6个
8.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )
A.两车同时到达乙地
B.轿车在行驶过程中进行了提速
C.货车出发3小时后,轿车追上货车
D.两车在前80千米的速度相等
9.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )
A.13,5 B.6.5,3 C.5,2 D.6.5,2
10.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=( )
A.3﹣ B.(+1) C.﹣1 D.(﹣1)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若分式方程的解为正数,则a的取值范围是______________.
12.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示
13.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.
14.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.
15.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.
16.已知是方程组的解,则a﹣b的值是___________
三、解答题(共8题,共72分)
17.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离;求这枚火箭从到的平均速度是多少(结果精确到0.01)?
18.(8分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
19.(8分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.
20.(8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
21.(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
22.(10分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,,)
23.(12分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.
求AD的长;
求证:FC是的切线.
24.某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡
普通白炽灯泡
进价(元)
45
25
标价(元)
60
30
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解:334亿=3.34×1010
“点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
直接利用提取公因式法以及公式法分解因式,进而判断即可.
【详解】
解:A、,无法直接分解因式,故此选项错误;
B、,无法直接分解因式,故此选项错误;
C、,无法直接分解因式,故此选项错误;
D、,正确.
故选:D.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
3、D
【解析】
根据一次函数的性质结合题目中的条件解答即可.
【详解】
解:由题可得,水深与注水量之间成正比例关系,
∴随着水的深度变高,需要的注水量也是均匀升高,
∴水瓶的形状是圆柱,
故选:D.
【点睛】
此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.
4、C
【解析】
矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
共3个既是轴对称图形又是中心对称图形.
故选C.
5、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
6、C
【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
7、C
【解析】
试题分析:①∵三角形三个内角的比是1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°,
∴3x=3×30°=90°,
∴此三角形是直角三角形,故本小题正确;
②∵三角形的一个外角与它相邻的一个内角的和是180°,
∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
④∵∠A=∠B=∠C,
∴设∠A=∠B=x,则∠C=2x,
∴x+x+2x=180°,解得x=45°,
∴2x=2×45°=90°,
∴此三角形是直角三角形,故本小题正确;
⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
∴三角形一个内角也等于另外两个内角的和,
∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
故选D.
考点:1.三角形内角和定理;2.三角形的外角性质.
8、B
【解析】
①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
【详解】
由题意和图可得,
轿车先到达乙地,故选项A错误,
轿车在行驶过程中进行了提速,故选项B正确,
货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
设货车对应的函数解析式为y=kx,
5k=300,得k=60,
即货车对应的函数解析式为y=60x,
设CD段轿车对应的函数解析式为y=ax+b,
,得,
即CD段轿车对应的函数解析式为y=110x-195,
令60x=110x-195,得x=3.9,
即货车出发3.9小时后,轿车追上货车,故选项C错误,
故选:B.
【点睛】
此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式
9、D
【解析】
根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
【详解】
解:如下图,
∵△ABC的三条边长分别是5,13,12,且52+122=132,
∴△ABC是直角三角形,
其斜边为外切圆直径,
∴外切圆半径==6.5,
内切圆半径==2,
故选D.
【点睛】
本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
10、C
【解析】
根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值.
【详解】
解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;
则BC=2×=-1.
故答案为:-1.
【点睛】
本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a<8,且a≠1
【解析】
分式方程去分母得:x=2x-8+a,
解得:x=8- a,
根据题意得:8- a>2,8- a≠1,
解得:a<8,且a≠1.
故答案为:a<8,且a≠1.
【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.
12、
【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.
【详解】
解:在△ABC中,,∠A=∠A,
∴△ABC△ADE,
∴DE=BC,
∴=3=3
∴=,
故答案为.
【点睛】
本题考查了相似三角形的判定和性质以及向量的运算.
13、7.5
【解析】
试题解析:当旋转到达地面时,为最短影长,等于AB,
∵最小值3m,
∴AB=3m,
∵影长最大时,木杆与光线垂直,
即AC=5m,
∴BC=4,
又可得△CAB∽△CFE,
∴
∵AE=5m,
∴
解得:EF=7.5m.
故答案为7.5.
点睛:相似三角形的性质:相似三角形的对应边成比例.
14、1
【解析】
试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,
相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为1.
15、8
【解析】
为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.
设第8次射击环数为x环,根据题意列出一元一次不等式
62+x+2×10>89
解之,得
x>7
x表示环数,故x为正整数且x>7,则
x的最小值为8
即第8次至少应打8环.
点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.
16、4;
【解析】
试题解析:把代入方程组得:,
①×2-②得:3a=9,即a=3,
把a=3代入②得:b=-1,
则a-b=3+1=4,
三、解答题(共8题,共72分)
17、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
【详解】
(Ⅰ)在中,,≈0.74,
∴.
答:发射台与雷达站之间的距离约为.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:这枚火箭从到的平均速度大约是.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
18、(1) (2)(0,)
【解析】
(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
【详解】
(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
设直线 A′B 的解析式为 y=mx+n,
则 ,解得,
∴直线 A′B 的解析式为 y= ,
∴x=0 时,y= ,
∴P 点坐标为(0,).
【点睛】
本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
19、(1)125°;(2)125°;(3)∠BOC=90°+n°.
【解析】
如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).
【详解】
如图,
∵BO、CO是角平分线,
∴∠ABC=2∠1,∠ACB=2∠2,
∵∠ABC+∠ACB+∠A=180°,
∴2∠1+2∠2+∠A=180°,
∵∠1+∠2+∠BOC=180°,
∴2∠1+2∠2+2∠BOC=360°,
∴2∠BOC﹣∠A=180°,
∴∠BOC=90°+∠A,
(1)∵∠ABC=50°,∠ACB=60°,
∴∠A=180°﹣50°﹣60°=70°,
∴∠BOC=90°+×70°=125°;
(2)∠BOC=90°+∠A=125°;
(3)∠BOC=90°+n°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
20、△A′DE是等腰三角形;证明过程见解析.
【解析】
试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
∴CD=DA=DB,
∴∠DAC=∠DCA,
∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA,
∴∠DA′E=∠DEA′,
∴DA′=DE,
∴△A′DE是等腰三角形.
∵四边形DEFD′是菱形,
∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC,
在△A′DE和△EFC′中,
,
∴△A′DE≌△EFC′.
考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.
21、 (1);(2).
【解析】
(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;
(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.
【详解】
(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,
∴任取一个球,摸出球上的汉字刚好是“美”的概率P=
(2)列表如下:
美
丽
光
明
美
----
(美,丽)
(光,美)
(美,明)
丽
(美,丽)
----
(光,丽)
(明,丽)
光
(美,光)
(光,丽)
----
(光,明)
明
(美,明)
(明,丽)
(光,明)
-------
根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故
取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
【点睛】
此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
22、1.4米.
【解析】
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.
【详解】
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,
∵AB=CD,AB+CD=AD=2,
∴AB=CD=1,
在Rt△ABE中,AB=1,∠A=37°,
∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,
在Rt△CDF中,CD=1,∠D=45°,
∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,
∵BE⊥AD,CF⊥AD,
∴BE∥CM,
又∵BE=CM,
∴四边形BEMC为平行四边形,
∴BC=EM,CM=BE.
在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,
∴EM=≈1.4,
∴B与C之间的距离约为1.4米.
【点睛】
本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.
23、(1);(2)证明见解析.
【解析】
(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;
(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.
【详解】
证明:连接OD,
是的直径,,
,
设,
,
,
在中,,
,
解得:,
,,
,
在中,;
连接OF、OC,
是切线,
,
,
,
,
四边形FADC是平行四边形,
,
平行四边形FADC是菱形
,
,
,
,
,
即,
即,
点C在上,
是的切线.
【点睛】
此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
24、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】
1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
【详解】
(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得
解得
答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.
(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120﹣a)个.根据题意得
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
∵k=10>0,∴W随a的增大而增大,
∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
【点睛】
本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
相关试卷
这是一份四川省成都市成华区市级名校2021-2022学年中考押题数学预测卷含解析,共17页。试卷主要包含了下列各式计算正确的是,﹣2×等内容,欢迎下载使用。
这是一份2022年四川省成都市高新南区重点名校中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列运算正确的是,化简的结果是等内容,欢迎下载使用。
这是一份2021-2022学年湛江市重点名校中考押题数学预测卷含解析,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。