四川省广安市2022年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
2.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
A. B. C. D.
3.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是( )
A.点A与点B B.点A与点D C.点B与点D D.点B与点C
4.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
5.﹣2018的绝对值是( )
A.±2018 B.﹣2018 C.﹣ D.2018
6.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
7.下列说法:
① ;
②数轴上的点与实数成一一对应关系;
③﹣2是的平方根;
④任何实数不是有理数就是无理数;
⑤两个无理数的和还是无理数;
⑥无理数都是无限小数,
其中正确的个数有( )
A.2个 B.3个 C.4个 D.5个
8.如图是几何体的三视图,该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.三棱锥
9.2016的相反数是( )
A. B. C. D.
10.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )
A.1 B.2 C.3 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.
12.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .
13.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为_____.
14.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=1.则k=_______.
15.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_____.
16.分解因式:m3–m=_____.
17.一元二次方程有两个不相等的实数根,则的取值范围是________.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
(1)△BCE∽△ADE;
(2)AB•BC=BD•BE.
19.(5分)某船的载重为260吨,容积为1000m1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙).
20.(8分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.
21.(10分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
(1)说明△BEF是等腰三角形;
(2)求折痕EF的长.
22.(10分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b= ,c= ,点C的坐标为 .如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.
23.(12分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).求反比例函数的解析式;若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.
24.(14分)先化简,再求值:,其中m=2.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
因为,所以,因为,故选D.
2、A
【解析】
试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
综上所知这个几何体是圆柱.
故选A.
考点:由三视图判断几何体.
3、A
【解析】
试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
故选A.
考点:1.倒数的定义;2.数轴.
4、C
【解析】
依据科学记数法的含义即可判断.
【详解】
解:48511111=4.85×117,故本题选择C.
【点睛】
把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
5、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
6、D
【解析】
先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选:D.
【点睛】
本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
7、C
【解析】
根据平方根,数轴,有理数的分类逐一分析即可.
【详解】
①∵,∴是错误的;
②数轴上的点与实数成一一对应关系,故说法正确;
③∵=4,故-2是 的平方根,故说法正确;
④任何实数不是有理数就是无理数,故说法正确;
⑤两个无理数的和还是无理数,如 和 是错误的;
⑥无理数都是无限小数,故说法正确;
故正确的是②③④⑥共4个;
故选C.
【点睛】
本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有π这样的数.
8、C
【解析】
分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.
详解:∵几何体的主视图和左视图都是长方形,
故该几何体是一个柱体,
又∵俯视图是一个三角形,
故该几何体是一个三棱柱,
故选C.
点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
9、C
【解析】
根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
故选C.
10、C
【解析】
分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.
详解:121
∴对121只需进行3次操作后变为1.
故选C.
点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.
二、填空题(共7小题,每小题3分,满分21分)
11、20
【解析】
先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.
【详解】
=40π.
设这个圆锥形纸帽的底面半径为r.
根据题意,得40π=2πr,
解得r=20cm.
故答案是:20.
【点睛】
解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
12、2
【解析】
试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.
考点:反比例函数系数k的几何意义.
13、3
【解析】
把点(1,2)代入解析式解答即可.
【详解】
解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,
解得:b=3,
故答案为3
【点睛】
本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.
14、2
【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.
则AD∥BE,AD=2BE=,
∴B、E分别是AC、DC的中点.
∴△ADC∽△BEC,
∵BE:AD=1:2,
∴EC:CD=1:2,
∴EC=DE=a,
∴OC=3a,
又∵A(a, ),B(2a, ),
∴S△AOC=AD×CO=×3a× ==1,
解得:k=2.
15、.
【解析】
已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.
【详解】
过点B作BC垂直OA于C,
∵点A的坐标是(2,0),
∴AO=2,
∵△ABO是等边三角形,
∴OC=1,BC=,
∴点B的坐标是
把代入,得
故答案为.
【点睛】
考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;
16、m(m+1)(m-1)
【解析】
根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),可以先提公因式,再利用平方差完成因式分解
【详解】
解:
故答案为:m(m+1)(m-1).
【点睛】
本题考查因式分解,掌握因式分解的技巧是解题关键.
17、且
【解析】
根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.
【详解】
由题意可得,1−k≠0,△=4+4(1−k)>0,
∴k<2且k≠1.
故答案为k<2且k≠1.
【点睛】
本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)见解析.
【解析】
(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
【详解】
证明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DE•DB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DE•DB,AD=DC
∴AD2=DE•DB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴AB•BC=BD•BE.
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
19、这艘船装甲货物80吨,装乙货物180吨.
【解析】
根据题意先列二元一次方程,再解方程即可.
【详解】
解:设这艘船装甲货物x吨,装乙货物y吨,
根据题意,得.
解得.
答:这艘船装甲货物80吨,装乙货物180吨.
【点睛】
此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.
20、(1)矩形的周长为4m;(2)矩形的面积为1.
【解析】
(1)根据题意和矩形的周长公式列出代数式解答即可.
(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.
【详解】
(1)矩形的长为:m﹣n,
矩形的宽为:m+n,
矩形的周长为:2[(m-n)+(m+n)]=4m;
(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,
当m=7,n=4时,S=72-42=1.
【点睛】
本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.
21、(1)见解析;(2).
【解析】
(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
【详解】
(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.
∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
在Rt△EMF中,由勾股定理得:EF==.
故答案为.
【点睛】
本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.
22、(3)3, 2,C(﹣2,4);(2)y=﹣m2+m ,PQ与OQ的比值的最大值为;(3)S△PBA=3.
【解析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.
【详解】
(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.
∴A(2,4),B(4,2).
又∵抛物线过B(4,2)
∴c=2.
把A(2,4)代入y=﹣x2+bx+2得,
4=﹣×22+2b+2,解得,b=3.
∴抛物线解析式为,y=﹣x2+x+2.
令﹣x2+x+2=4,
解得,x=﹣2或x=2.
∴C(﹣2,4).
(2)如图3,
分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.
设P(m,﹣m2+m+2),Q(n,﹣n+2),
则PE=﹣m2+m+2,QD=﹣n+2.
又∵=y.
∴n=.
又∵,即
把n=代入上式得,
整理得,2y=﹣m2+2m.
∴y=﹣m2+m.
ymax=.
即PQ与OQ的比值的最大值为.
(3)如图2,
∵∠OBA=∠OBP+∠PBA=25°
∠PBA+∠CBO=25°
∴∠OBP=∠CBO
此时PB过点(2,4).
设直线PB解析式为,y=kx+2.
把点(2,4)代入上式得,4=2k+2.
解得,k=﹣2
∴直线PB解析式为,y=﹣2x+2.
令﹣2x+2=﹣x2+x+2
整理得, x2﹣3x=4.
解得,x=4(舍去)或x=5.
当x=5时,﹣2x+2=﹣2×5+2=﹣7
∴P(5,﹣7).
过P作PH⊥cy轴于点H.
则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.
S△OAB=OA•OB=×2×2=7.
S△BHP=PH•BH=×5×3=35.
∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.
【点睛】
本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.
23、(1)y=;(2)y=﹣或y=
【解析】
试题分析:(1)把A(1,2k-1)代入y=即可求得结果;
(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果.
试题解析:
(1)把A(1,2k﹣1)代入y=得,
2k﹣1=k,
∴k=1,
∴反比例函数的解析式为:y=;
(2)由(1)得k=1,
∴A(1,1),
设B(a,0),
∴S△AOB=•|a|×1=3,
∴a=±6,
∴B(﹣6,0)或(6,0),
把A(1,1),B(﹣6,0)代入y=mx+b得:
,
∴ ,
∴一次函数的解析式为:y=x+,
把A(1,1),B(6,0)代入y=mx+b得:
,
∴,
∴一次函数的解析式为:y=﹣.
所以符合条件的一次函数解析式为:y=﹣或y=x+.
24、,原式.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
【详解】
原式,
当m=2时,原式.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
2024年四川省广安市中考数学试题(原卷版+含解析): 这是一份2024年四川省广安市中考数学试题(原卷版+含解析),共34页。
2022年四川省广安市华蓥市中考二模数学试题含解析: 这是一份2022年四川省广安市华蓥市中考二模数学试题含解析,共22页。试卷主要包含了计算的结果为等内容,欢迎下载使用。
2022年四川省宜宾市名校中考适应性考试数学试题含解析: 这是一份2022年四川省宜宾市名校中考适应性考试数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,下列各数是不等式组的解是,如图所示,有一条线段是.等内容,欢迎下载使用。