开学活动
搜索
    上传资料 赚现金

    陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析

    陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析第1页
    陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析第2页
    陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析

    展开

    这是一份陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算错误的是,﹣2018的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是(  )
    A.2 B.1 C.-2 D.-1
    2.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

    A. B. C. D.
    3.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十
    .问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为(  )
    A. B.
    C. D.
    4.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(    ).
    A.众数 B.中位数 C.平均数 D.方差
    5.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
    ①线段MN的长;
    ②△PAB的周长;
    ③△PMN的面积;
    ④直线MN,AB之间的距离;
    ⑤∠APB的大小.
    其中会随点P的移动而变化的是( )

    A.②③ B.②⑤ C.①③④ D.④⑤
    6.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是( )

    A.44° B.53° C.72° D.54°
    7.下列计算错误的是(  )
    A.4x3•2x2=8x5 B.a4﹣a3=a
    C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
    8.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为(  )
    A.1 B.2 C.3 D.4
    9.﹣2018的相反数是(  )
    A.﹣2018 B.2018 C.±2018 D.﹣
    10.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为(  )

    A.1 B. C.2 D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.
    12.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.

    13.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.

    14.中,,,高,则的周长为______。
    15.如图,直线l1∥l2,则∠1+∠2=____.

    16.如果实数x、y满足方程组,求代数式(+2)÷.
    17.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).

    三、解答题(共7小题,满分69分)
    18.(10分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
    求证:;
    求证:四边形BDFG为菱形;
    若,,求四边形BDFG的周长.

    19.(5分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.

    20.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,

    (1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;
    (2)如图,当点B为的中点时,求点A、D之间的距离:
    (3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.
    21.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
    (1)求y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

    22.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

    23.(12分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)请添加一个条件使四边形BEDF为菱形.

    24.(14分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.
    (1)实践操作:尺规作图,不写作法,保留作图痕迹.
    ①作∠ABC的角平分线交AC于点D.
    ②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
    (2)推理计算:四边形BFDE的面积为   .




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.
    考点:根与系数的关系.
    2、B
    【解析】
    根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
    【详解】
    连接BD,

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中,

    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF-S△ABD=
    =.
    故选B.
    3、A
    【解析】
    设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.
    【详解】
    解:设甲的钱数为x,乙的钱数为y,
    依题意,得:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
    4、B
    【解析】
    分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.
    详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,
    故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
    故选B.
    点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数
    5、B
    【解析】
    试题分析:
    ①、MN=AB,所以MN的长度不变;
    ②、周长C△PAB=(AB+PA+PB),变化;
    ③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
    ④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
    ⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
    故选B
    考点:动点问题,平行线间的距离处处相等,三角形的中位线
    6、D
    【解析】
    根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.
    【详解】
    根据直径所对的圆周角为直角可得∠BAE=90°,
    根据∠E=36°可得∠B=54°,
    根据平行四边形的性质可得∠ADC=∠B=54°.
    故选D
    【点睛】
    本题考查了平行四边形的性质、圆的基本性质.
    7、B
    【解析】
    根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
    【详解】
    A选项:4x3•1x1=8x5,故原题计算正确;
    B选项:a4和a3不是同类项,不能合并,故原题计算错误;
    C选项:(-x1)5=-x10,故原题计算正确;
    D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
    故选:B.
    【点睛】
    考查了整式的乘法,关键是掌握整式的乘法各计算法则.
    8、B
    【解析】
    先由平均数是3可得x的值,再结合方差公式计算.
    【详解】
    ∵数据1、2、3、x、5的平均数是3,
    ∴=3,
    解得:x=4,
    则数据为1、2、3、4、5,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
    故选B.
    【点睛】
    本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
    9、B
    【解析】
    分析:只有符号不同的两个数叫做互为相反数.
    详解:-1的相反数是1.
    故选:B.
    点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
    10、B
    【解析】
    由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
    【详解】
    解:∵点F是AC的中点,
    ∴AF=CF=AC,
    ∵将△CDE沿CE折叠到△CFE,
    ∴CD=CF=,DE=EF,
    ∴AC=,
    在Rt△ACD中,AD==1.
    ∵S△ADC=S△AEC+S△CDE,
    ∴×AD×CD=×AC×EF+×CD×DE
    ∴1×=EF+DE,
    ∴DE=EF=1,
    ∴S△AEC=××1=.
    故选B.
    【点睛】
    本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、8π
    【解析】
    试题分析:∵弧的半径为24,所对圆心角为60°,
    ∴弧长为l==8π.
    故答案为8π.
    【考点】弧长的计算.
    12、6°
    【解析】
    ∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
    ∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.
    13、1
    【解析】
    根据相似三角形的对应边的比相等列出比例式,计算即可.
    【详解】
    ∵△ADE∽△ACB,∴=,即=,
    解得:BD=1.
    故答案为1.
    【点睛】
    本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
    14、32或42
    【解析】
    根据题意,分两种情况讨论:①若∠ACB是锐角,②若∠ACB是钝角,分别画出图形,利用勾股定理,即可求解.
    【详解】
    分两种情况讨论:
    ①若∠ACB是锐角,如图1,
    ∵,,高,
    ∴在Rt∆ABD中,,
    即:,
    同理:,
    ∴的周长=9+5+15+13=42,
    ②若∠ACB是钝角,如图2,
    ∵,,高,
    ∴在Rt∆ABD中,,
    即:,
    同理:,
    ∴的周长=9-5+15+13=32,
    故答案是:32或42.

    【点睛】
    本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.
    15、30°
    【解析】
    分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
    【详解】
    如图,分别过A、B作l1的平行线AC和BD,

    ∵l1∥l2,
    ∴AC∥BD∥l1∥l2,
    ∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
    ∵∠EAB+∠FBA=125°+85°=210°,
    ∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
    即∠1+∠2+180°=210°,
    ∴∠1+∠2=30°,
    故答案为30°.
    【点睛】
    本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
    16、1
    【解析】
    解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.
    点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    17、100+100
    【解析】
    【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.
    【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,
    ∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,
    ∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,
    ∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,
    ∴AB=AD+DB=100+100(米),
    故答案为:100+100.
    【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)证明见解析(3)1
    【解析】
    利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
    利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
    设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
    【详解】
    证明:,,

    又为AC的中点,

    又,

    证明:,,
    四边形BDFG为平行四边形,
    又,
    四边形BDFG为菱形,
    解:设,则,,
    在中,,
    解得:,舍去,

    菱形BDFG的周长为1.
    【点睛】
    本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
    19、见解析
    【解析】
    根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,且AD=BC,
    ∴AF∥EC,
    ∵BE=DF,
    ∴AF=EC,
    ∴四边形AECF是平行四边形,
    ∴AE=CF.
    【点睛】
    本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
    20、(1);(2);(3)
    【解析】
    (1)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD的值.
    (2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.
    (3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.
    【详解】
    (1)如图1:连接OB、OC.
    ∵BC=AO
    ∴OB=OC=BC
    ∴△OBC是等边三角形
    ∴∠BOC=60°
    ∵点D是BC的中点
    ∴∠BOD=
    ∵OA=OC
    ∴=α
    ∴∠AOD=180°-α-α-=150°-2α

    (2)如图2:连接OB、OC、OD.
    由(1)可得:△OBC是等边三角形,∠BOD=
    ∵OB=2,
    ∴OD=OB∙cos=
    ∵B为的中点,
    ∴∠AOB=∠BOC=60°
    ∴∠AOD=90°
    根据勾股定理得:AD=

    (3)①如图3.圆O与圆D相内切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    设AF=x
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    ②如图4.圆O与圆D相外切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    【点睛】
    本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.
    21、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【解析】
    根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
    【详解】
    (1).
    (2) 根据题意,得:


    ∴当时,随x的增大而增大

    ∴当时,取得最大值,最大值是144
    答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【点睛】
    熟悉掌握图中所给信息以及列方程组是解决本题的关键.
    22、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【解析】
    【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
    (2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
    【详解】(1)设该一次函数解析式为y=kx+b,
    将(150,45)、(0,1)代入y=kx+b中,得
    ,解得:,
    ∴该一次函数解析式为y=﹣x+1;
    (2)当y=﹣x+1=8时,
    解得x=520,
    即行驶520千米时,油箱中的剩余油量为8升.
    530﹣520=10千米,
    油箱中的剩余油量为8升时,距离加油站10千米,
    ∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
    23、见解析
    【解析】
    (1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
    【详解】
    (1)∵四边形ABCD是平行四边形,O是BD的中点,
    ∴AB∥DC,OB=OD,
    ∴∠OBE=∠ODF,
    又∵∠BOE=∠DOF,
    ∴△BOE≌△DOF(ASA),
    ∴EO=FO,
    ∴四边形BEDF是平行四边形;
    (2)EF⊥BD.
    ∵四边形BEDF是平行四边形,
    ∵EF⊥BD,
    ∴平行四边形BEDF是菱形.
    【点睛】
    本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.
    24、 (1)详见解析;(2).
    【解析】
    (1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;
    (2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.
    【详解】
    (1)如图,DE、DF为所作;

    (2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.
    ∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.
    ∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.
    ∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×2=8.
    故答案为:8.
    【点睛】
    本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).

    相关试卷

    陕西省西安市雁塔区电子科技中学2023-2024学年八上数学期末统考试题含答案:

    这是一份陕西省西安市雁塔区电子科技中学2023-2024学年八上数学期末统考试题含答案,共7页。试卷主要包含了在下列运算中,正确的是,如图,能判定EB∥AC的条件是,下列哪一组数是勾股数,牛顿曾说过等内容,欢迎下载使用。

    陕西省西安市雁塔区2021-2022学年中考数学全真模拟试题含解析:

    这是一份陕西省西安市雁塔区2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了如图,反比例函数,如图等内容,欢迎下载使用。

    陕西西安市爱知中学2022年中考试题猜想数学试卷含解析:

    这是一份陕西西安市爱知中学2022年中考试题猜想数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,计算-5+1的结果为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map