初中数学冀教版九年级上册24.3 一元二次方程根与系数的关系课前预习课件ppt
展开1.探索一元二次方程的根与系数的关系.
2.不解方程利用一元二次方程的根与系数的关系解决问题.
1.一元二次方程的求根公式是什么?
2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0) b2 - 4ac > 0 时,方程有两个不相等的实数根.b2 - 4ac = 0 时,方程有两个相等的实数根.b2 - 4ac < 0 时,方程无实数根.
思考:方程的两根x1和x2与系数a,b,c还有其它关系吗?
解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.
通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?
思考:你能证明这个结论吗?
ax2+bx+c=0(a≠0)(b2-4ac≥0)根据公式法得到两个根为:
一元二次方程的根与系数的关系
如果 ax2+bx+c=0(a≠0)的两个根为x1、 x2,那么
【特别强调】满足上述关系的前提条件:b2-4ac≥0.
例1:利用根与系数的关系,求下列方程的两根之和、两根之积. (1)x2 + 7x + 6 = 0; (2)2x2 - 3x - 2 = 0.
解: a = 1 , b = 7 , c = 6. Δ = b2 - 4ac = 72 – 4 × 1 × 6 = 25 > 0.∴方程有两个实数根.设方程的两个实数根是 x1, x2, 那么x1 + x2 = -7 , x1 x2 = 6.
解: a = 2 , b = -3 , c = -2. Δ= b2 - 4ac = (- 3)2 – 4 × 2 × (-2) = 25 > 0.∴方程有两个实数根.设方程的两个实数根是 x1, x2, 那么x1 + x2 = , x1 x2 = -1 .
例2:已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.
解:设方程的两个根分别是x1、x2,其中x1=2 . 所以:x1 · x2=2x2= 即:x2= 由于x1+x2=2+ = 得:k=-7.答:方程的另一个根是 ,k=-7.
已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.
解:设方程的两个根分别是x1、x2,其中x1=1. 所以:x1 + x2=1+x2=6, 即:x2=5 . 由于x1·x2=1×5= 得:m=15.答:方程的另一个根是5,m=15.
例3:不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.
解:设方程的两个根分别是x1 、x2,根据根与系数的关系可知:
例4:设x1,x2是方程 x2 -2(k - 1)x + k2 =0 的两个实数根,且x12 +x22 =4,求k的值.
解:由方程有两个实数根,得Δ= 4(k - 1)2 - 4k2 ≥ 0 即 -8k + 4 ≥ 0. 由根与系数的关系得 x1 + x2 = 2(k -1) , x1 x2 =k 2. ∴ x12 + x22 = (x1 + x2)2 - 2x1x2 = 4(k -1)2 -2k2 = 2k2 -8k + 4. 由 x12 + x22 = 4,得 2k2 - 8k + 4 = 4, 解得 k1= 0 , k2 = 4 . 经检验, k2 = 4 不合题意,舍去.
【点睛】求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.
1.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m =____.
2.已知一元二次方程x2+px+q=0的两根分别为-2 和 1 ,则:p=___ , q=____ .
3.设x1, x2为方程x2-4x+1=0的两个根,则: (1)x1+x2=____ ; (2)x1·x2=_____; (3) _____; (4) _____.
4.已知方程 3x2 -19x + m=0的一个根是1,求它的另一个根及m的值.
解:将x = 1代入方程中: 3 -19 + m = 0. 解得 m = 16, 设另一个根为x1,则: 1 × x1 = ∴x1 =
5.设x1,x2是方程3x2 + 4x – 3 = 0的两个根.利用根系数之间的关系,求下列各式的值. (1) (x1 + 1)(x2 + 1); (2)
解:根据根与系数的关系得:(1)(x1 + 1)(x2 + 1) = x1 x2 + x1 + x2 + 1=(2)
6. 当k为何值时,方程2x2-kx+1=0的两根差为1.
解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1
∵ (x1-x2)2=(x1+x2)2-4x1x2=1
7.已知关于x的一元二次方程mx2-2mx+ m -2=0 (1)若方程有实数根,求实数m的取值范围. (2)若方程两根x1,x2满足∣x1-x2∣= 1 求m的值.
解:(1)方程有实数根
∴m的取值范围为m>0
(2)∵方程有实数根x1,x2
经检验m=8是原方程的解.
一、一元二次方程的根与系数的关系
初中数学冀教版九年级上册24.3 一元二次方程根与系数的关系教课内容课件ppt: 这是一份初中数学冀教版九年级上册24.3 一元二次方程根与系数的关系教课内容课件ppt,共15页。
人教版九年级上册24.3 正多边形和圆教案配套ppt课件: 这是一份人教版九年级上册24.3 正多边形和圆教案配套ppt课件,共26页。PPT课件主要包含了复习旧知,正多边形的定义,情景导入,讲授新知,四典例解析,五正多边形的画法,八边形,三十二边形,正五角形的尺规画法,探索之旅等内容,欢迎下载使用。
初中数学冀教版九年级上册24.3 一元二次方程根与系数的关系示范课课件ppt: 这是一份初中数学冀教版九年级上册24.3 一元二次方程根与系数的关系示范课课件ppt,共14页。PPT课件主要包含了方程二次项系数不为0,b2-4ac≥0等内容,欢迎下载使用。