(新高考)高考数学一轮复习考点练习23《导数的应用》(解析版)
展开
这是一份(新高考)高考数学一轮复习考点练习23《导数的应用》(解析版),共19页。
考点23 导数的应用
【命题解读】
从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力
【基础知识回顾】
1、逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决问题,降低了思考问题的难度,优化了推理和运算过程.
(1)对数形式:x≥1+ln x(x>0),当且仅当x=1时,等号成立.
(2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+ln x(x>0,且x≠1).
2、一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若af(x)min;若存在x0∈D,使a
相关试卷
这是一份高中数学高考考点23 导数的应用(解析版),共19页。
这是一份(新高考)高考数学一轮复习考点复习讲义第17讲《导数的应用-利用导数证明不等式》(解析版),共6页。
这是一份(新高考)高考数学一轮复习考点复习讲义第16讲《导数的应用-导数与函数的极值、最值》(解析版),共15页。试卷主要包含了函数的极值,函数的最值等内容,欢迎下载使用。