初中数学人教版九年级上册25.2 用列举法求概率第2课时课堂检测
展开
这是一份初中数学人教版九年级上册25.2 用列举法求概率第2课时课堂检测,共4页。试卷主要包含了中考体育男生抽测项目规则是等内容,欢迎下载使用。
第2课时 用树状图法求概率基础题 知识点 用树状图求概率1.(北海中考)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( )A. B. C. D.2.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A. B. C. D.3.(黄石中考)学校团委在五四青年节举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是( )A. B. C. D.4.(河南中考)现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是________.5.(嘉兴中考)有两辆车按1,2编号,周周和佳佳两人可任意选坐一辆车,则两人同坐2号车的概率为________.6.(河南中考)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球.两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是________.7.(扬州中考改编)“2015扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程马拉松”、B.“10公里”、C.“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.则小明和小刚被分配到不同项目组的概率为________.8.(扬州中考)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率. 9.(巴中中考改编)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少? 中档题10.(深圳中考)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,则抽取的两个球数字之和大于6的概率是( )A. B. C. D.11.(淄博中考)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A. B. C. D.12.(山西中考)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是______.13.(葫芦岛中考)某演讲比赛中,只有甲、乙、丙三位同学进入决赛,他们通过抽签来决定演讲顺序,用画树状图法求:(1)甲第二个出场的概率; (2)丙在乙前面出场的概率. 14.(遵义中考)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜;否则,小军胜.(1)请用树状图法求出摸笔游戏所有可能的结果; (2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利. 综合题15.(连云港中考)甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回甲手中的概率是多少? (2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由. 参考答案基础题1.B 2.D 3.A 4. 5. 6. 7. 8.(1) (2)画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为=. 9.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD是平行四边形的概率是=.中档题10.C 11.B 12. 13.(1)树状图如下:所以P(甲第二个出场)==.(2)P(丙在乙前面出场)==. 14.(1)根据题意,设红笔为A1,A2,A3,黑笔为B1,B2,作树状图如下:所以一共有20种可能.(2)从树状图可以看出,两次抽取笔的颜色相同有8种情况,则小明获胜的概率为=,小军获胜的概率为,显然本游戏规则不公平,对小军有利.综合题15.(1)画树状图如图:可看出:三次传球有8种等可能结果,其中传回甲手中的有2种.所以P(传球三次回到甲手中)==.(2)由(1)可知:从甲开始传球,传球三次后球传到甲手中的概率为,球传到乙,丙手中的概率均为,所以三次传球后球回到乙手中的概率最大值为.所以乙会让球开始时在甲手中或丙手中.
相关试卷
这是一份人教版九年级上册第二十五章 概率初步25.2 用列举法求概率第2课时当堂达标检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学九年级上册第二十五章 概率初步25.2 用列举法求概率精品第2课时课后作业题,共4页。试卷主要包含了能力提升,创新应用等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册25.1.2 概率第2课时课后复习题,共2页。