搜索
    上传资料 赚现金
    (新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解)
    立即下载
    加入资料篮
    (新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解)01
    (新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解)02
    (新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解)

    展开
    这是一份(新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解),共19页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    第3讲 直线、平面平行的判定与性质


    一、知识梳理
    1.直线与平面平行的判定定理和性质定理

    文字语言
    图形语言
    符号语言
    判定
    定理
    平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)

    因为l∥a,
    a⊂α,l⊄α,
    所以l∥α
    性质
    定理
    一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)

    因为l∥α,
    l⊂β,
    α∩β=b,
    所以l∥b
    2.平面与平面平行的判定定理和性质定理

    文字语言
    图形语言
    符号语言
    判定
    定理
    一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)

    因为a∥β,
    b∥β,a∩b=P,
    a⊂α,b⊂α,
    所以α∥β
    性质
    定理
    如果两个平行平面同时和第三个平面相交,那么它们的交线平行

    因为α∥β,
    α∩γ=a,
    β∩γ=b,
    所以a∥b
    常用结论
    1.三种平行关系的转化:
    线线平行线面平行面面性质定理平行
    线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.
    2.平行关系中的三个重要结论
    (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
    (2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
    (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
    二、教材衍化
    1.平面α∥平面β的一个充分条件是(  )
    A.存在一条直线a,a∥α,a∥β
    B.存在一条直线a,a⊂α,a∥β
    C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α
    D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
    解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.
    2.已知正方体ABCD­A1B1C1D1,下列结论中,正确的是________(只填序号).
    ①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.
    解析:连接AD1,BC1,AB1,B1D1,C1D,BD,因为ABC1D1,所以四边形AD1C1B为平行四边形,

    故AD1∥BC1,从而①正确;
    易证BD∥B1D1,AB1∥DC1,
    又AB1∩B1D1=B1,BD∩DC1=D,
    故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面.③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.
    答案:①②④

    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)直线l平行于平面α内的无数条直线,则l∥α.(  )
    (2)若直线l在平面α外,则l∥α.(  )
    (3)若直线l∥b,直线b⊂α,则l∥α.(  )
    (4)若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.(  )
    答案:(1)× (2)× (3)× (4)√
    二、易错纠偏
    (1)对空间平行关系的相互转化条件理解不够;
    (2)忽略线面平行、面面平行的条件.
    1.如果直线a∥平面α,那么直线a与平面α内的(  )
    A.一条直线不相交   
    B.两条直线不相交
    C.无数条直线不相交
    D.任意一条直线都不相交
    解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.
    2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.

    解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.
    答案:平行四边形

    考点一 线面平行的判定与性质(基础型)
    以立体几何的定义、公理和定理为出发点,认识和理解空间中直线与平面平行的有关性质与判定定理.
    核心素养:直观想象、逻辑推理
    角度一 线面平行的证明
    在正方体ABCD­A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:
    (1)BF∥HD1;
    (2)EG∥平面BB1D1D.
    【证明】 (1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,

    所以HD1∥MC1.
    又因为在平面BCC1B1中,BMFC1,
    所以四边形BMC1F为平行四边形,
    所以MC1∥BF,
    所以BF∥HD1.
    (2)取BD的中点O,连接EO,D1O,
    则OE∥DC且OE=DC,
    又D1G∥DC且D1G=DC,
    所以OED1G,
    所以四边形OEGD1是平行四边形,
    所以GE∥D1O.
    又D1O⊂平面BB1D1D,GE⊄平面BB1D1D,
    所以EG∥平面BB1D1D.

    证明直线与平面平行的常用方法
    (1)利用线面平行的定义.
    (2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明. 
    角度二 线面平行性质的应用
    如图,在五面体ABCDFE中,底面ABCD为矩形,EF∥AB,过BC的平面交棱FD于点P,交棱FA于点Q.
    证明:PQ∥平面ABCD.

    【证明】 因为底面ABCD为矩形,所以AD∥BC,
    ⇒BC∥平面ADF,
    ⇒BC∥PQ,
    PQ∥平面ABCD.

    应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行. 

    1.(2020·辽宁丹东质量测试(一))如图,直三棱柱ABC­A1B1C1中,∠BAC=90°,AB=AC=2,D,E分别为AA1,B1C的中点.证明:DE∥平面ABC.

    证明:取BC的中点F,
    连接AF,EF,
    则EF∥BB1,EF=BB1,所以EF∥DA,EF=DA,
    则四边形ADEF为平行四边形,所以DE∥AF.
    又因为DE⊄平面ABC,AF⊂平面ABC,所以DE∥平面ABC.
    2.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.

    (1)求证:AM∥平面BDE;
    (2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.
    解:(1)证明:如图,记AC与BD的交点为O,连接OE.

    因为O,M分别是AC,EF的中点,四边形ACEF是矩形,
    所以四边形AOEM是平行四边形,所以AM∥OE.
    又因为OE⊂平面BDE,AM⊄平面BDE,
    所以AM∥平面BDE.
    (2)l∥m,证明如下:由(1)知AM∥平面BDE,
    又AM⊂平面ADM,平面ADM∩平面BDE=l,
    所以l∥AM,同理,AM∥平面BDE,
    又AM⊂平面ABM,平面ABM∩平面BDE=m,
    所以m∥AM,所以l∥m.
    考点二 面面平行的判定与性质
    以立体几何的定义、公理和定理为出发点,认识和理解空间中平面与平面平行的有关性质与判定定理.
    核心素养:逻辑推理、直观想象
    如图所示,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:

    (1)B,C,H,G四点共面;
    (2)平面EFA1∥平面BCHG.
    【证明】 (1)因为G,H分别是
    A1B1,A1C1的中点,
    所以GH∥B1C1,又B1C1∥BC,
    所以GH∥BC,所以B,C,H,G四点共面.
    (2)在△ABC中,E,F分别为AB,AC的中点,
    所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.
    又因为G,E分别为A1B1,AB的中点,
    所以A1GEB,所以四边形A1EBG是平行四边形,
    所以A1E∥GB.
    因为A1E⊄平面BCHG,GB⊂平面BCHG,
    所以A1E∥平面BCHG.
    又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.
    【迁移探究1】 (变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.
    证明:如图所示,连接HD,A1B,

    因为D为BC1的中点,
    H为A1C1的中点,所以HD∥A1B,
    又HD⊄平面A1B1BA,
    A1B⊂平面A1B1BA,
    所以HD∥平面A1B1BA.
    【迁移探究2】 (变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.
    证明:如图所示,

    连接A1C交AC1于点M,
    因为四边形A1ACC1是平行四边形,
    所以M是A1C的中点,连接MD,
    因为D为BC的中点,
    所以A1B∥DM.
    因为A1B⊂平面A1BD1,DM⊄平面A1BD1,
    所以DM∥平面A1BD1.
    又由三棱柱的性质知,D1C1BD,
    所以四边形BDC1D1为平行四边形,
    所以DC1∥BD1.
    又DC1⊄平面A1BD1,BD1⊂平面A1BD1,
    所以DC1∥平面A1BD1,
    又因为DC1∩DM=D,DC1,DM⊂平面AC1D,
    所以平面A1BD1∥平面AC1D.

     

    1.如图,AB∥平面α∥平面β,过点A,B的直线m,n分别交α,β于点C,E和点D,F,若AC=2,CE=3,BF=4,则BD的长为(  )

    A.        B.
    C. D.
    解析:选C.由AB∥α∥β,易证 =.
    即=,所以BD===.
    2.(一题多解)如图,四边形ABCD是边长为3的正方形,ED⊥平面ABCD,AF⊥平面ABCD,DE=3AF=3.证明:平面ABF∥平面DCE.

    证明:法一:因为DE⊥平面ABCD,AF⊥平面ABCD,
    所以DE∥AF.
    因为AF⊄平面DCE,DE⊂平面DCE,
    所以AF∥平面DCE.
    因为四边形ABCD是正方形,所以AB∥CD.
    因为AB⊄平面DCE,
    所以AB∥平面DCE.
    因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,
    所以平面ABF∥平面DCE.
    法二:因为DE⊥平面ABCD,AF⊥平面ABCD,
    所以DE∥AF.
    因为四边形ABCD为正方形,
    所以AB∥CD.
    又AF∩AB=A,DE∩DC=D,
    所以平面ABF∥平面DCE.
    法三:因为DE⊥平面ABCD,
    所以DE⊥AD,在正方形ABCD中,AD⊥DC.
    又DE∩DC=D,
    所以AD⊥平面DEC.
    同理AD⊥平面ABF.
    所以平面ABF∥平面DCE.
    考点三 平行关系中的探索性问题
    能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
    核心素养:逻辑推理、直观想象
    如图,已知斜三棱柱ABC­A1B1C1中,点D,D1分别为AC,A1C1上的点.

    (1)当等于何值时,BC1∥平面AB1D1?
    (2)若平面BC1D∥平面AB1D1,求的值.
    【解】 (1)如图,取D1为线段A1C1的中点,此时=1,

    连接A1B交AB1于点O,连接OD1.
    由棱柱的性质,知四边形A1ABB1为平行四边形,
    所以点O为A1B的中点.
    在△A1BC1中,点O,D1分别为A1B,A1C1的中点,
    所以OD1∥BC1.
    又因为OD1⊂平面AB1D1,BC1⊄平面AB1D1,
    所以BC1∥平面AB1D1.
    所以当=1时,BC1∥平面AB1D1.
    (2)由已知,平面BC1D∥平面AB1D1,
    且平面A1BC1∩平面BDC1=BC1,
    平面A1BC1∩平面AB1D1=D1O.
    因此BC1∥D1O,同理AD1∥DC1.
    因为=,=.
    又因为=1,所以=1,即=1.

    解决探索性问题的方法
    (1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.
    (2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”. 
     (一题多解)如图,四棱锥E­ABCD,平面ABCD⊥平面ABE,四边形ABCD为矩形,AD=6,AB=5,BE=3,F为CE上的点,且BF⊥平面ACE.

    (1)求证:AE⊥BE;
    (2)设M在线段DE上,且满足EM=2MD,试在线段AB上确定一点N,使得MN∥平面BCE,并求MN的长.
    解:(1)证明:因为四边形ABCD为矩形,所以BC⊥AB.
    因为平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,且BC⊂平面ABCD,
    所以BC⊥平面ABE.
    又AE⊂平面ABE,所以BC⊥AE.
    因为BF⊥平面ACE,AE⊂平面ACE,
    所以BF⊥AE.
    又因为BC∩BF=B,BC⊂平面BCE,BF⊂平面BCE,
    所以AE⊥平面BCE,
    因为BE⊂平面BCE,
    所以AE⊥BE.
    (2)法一:如图,在△ADE中过M点作MG∥AD交AE于G点,在△ABE中过G点作GN∥BE交AB于N点,连接MN,

    因为NG∥BE,NG⊄平面BCE,BE⊂平面BCE,
    所以NG∥平面BCE.
    同理可证,GM∥平面BCE.
    因为MG∩GN=G,
    所以平面MGN∥平面BCE,
    又因为MN⊂平面MGN,
    所以MN∥平面BCE,
    因为N点为线段AB上靠近A点的一个三等分点,
    AD=6,AB=5,BE=3,
    所以MG=AD=4,NG=BE=1,
    所以MN===.
    法二:如图,过M点作MG∥CD交CE于G点,连接BG,在AB上取N点,使得BN=MG,连接MN,
    因为MG∥CD,EM=2MD,
    所以MG=CD,
    因为AB∥CD,BN=MG,
    所以四边形MGBN是平行四边形,
    所以MN∥BG,
    又因为MN⊄平面BCE,BG⊂平面BCE,

    所以MN∥平面BCE,
    又MG=CD,MG=BN,
    所以BN=AB,
    所以N点为线段AB上靠近A点的一个三等分点.
    在△CBG中,因为BC=AD=6,CG=CE==,cos∠BCG=,
    所以BG2=36+5-2×6××=17,
    所以MN=BG=.

    [基础题组练]
    1.若直线l不平行于平面α,且l⊄α,则(  )
    A.α内的所有直线与l异面
    B.α内不存在与l平行的直线
    C.α与直线l至少有两个公共点
    D.α内的直线与l都相交
    解析:选B.因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.
    2.(2020·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是(  )
    A.l⊂α,m⊂β,α∥β B.α∥β,α∩γ=l,β∩γ=m
    C.l∥α,m⊂α D.l⊂α,α∩β=m
    解析:选B.选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交,故选B.
    3.(2020·长沙市统一模拟考试)设a,b,c表示不同直线,α,β表示不同平面,下列命题:
    ①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.
    真命题的个数是(  )
    A.1 B.2
    C.3 D.4
    解析:选A.由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,根据a∥α,b∥α,可以推出a与b平行、相交或异面,故③是假命题;对于④,根据a⊂α,b⊂β.α∥β,可以推出a∥b或a与b异面,故④是假命题,所以真命题的个数是1,故选A.
    4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则(  )

    A.BD∥平面EFGH,且四边形EFGH 是矩形
    B.EF∥平面BCD,且四边形EFGH是梯形
    C.HG∥平面ABD,且四边形EFGH是菱形
    D.EH∥平面ADC,且四边形EFGH是平行四边形
    解析:选B.由AE∶EB=AF∶FD=1∶4知EFBD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HGBD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.
    5.在正方体ABCD­A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:

    ①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.
    其中推断正确的序号是(  )
    A.①③ B.①④
    C.②③ D.②④
    解析:选A.因为在正方体ABCD­A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,
    因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;
    因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;
    因为E,F,G分别是A1B1,B1C1,BB1的中点,
    所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,
    所以FG∥平面BC1D1,故③正确;
    因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.
    6.如图,正方体ABCD­A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于________.

    解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.
    故EF=AC=.
    答案:
    7.在下面给出的条件中,若条件足够推出a∥α,则在横线上填“OK”;若条件不能保证推出a∥α,则请在横线上补足条件:
    (1)条件:a∥b,b∥c,c⊂α,______,结论:a∥α;
    (2)条件:α∩β=b,a∥b,a⊂β,______,结论:a∥α.
    解析:因为a∥b,b∥c,c⊂α,所以由直线与平面平行的判定定理得,当a⊄α时,a∥α.因为α∩β=b,a∥b,a⊂β,则由直线与平面平行的判定定理得a∥α.
    答案:a⊄α OK
    8.在四面体A­BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
    解析:如图,取CD的中点E,连接AE,BE,

    则EM∶MA=1∶2,EN∶BN=1∶2,
    所以MN∥AB.
    因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,
    所以MN∥平面ABD,MN∥平面ABC.
    答案:平面ABD与平面ABC
    9.在如图所示的一块木料中,棱BC平行于平面A′B′C′D′.

    (1)要经过平面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?
    (2)所画的线与平面ABCD是什么位置关系?并证明你的结论.
    解: (1)过点P作B′C′的平行线,

    交A′B′,C′D′于点E,F,
    连接BE,CF.
    作图如右:
    (2)EF∥平面ABCD.理由如下:
    因为BC∥平面A′B′C′D′,
    又因为平面B′C′CB∩平面A′B′C′D′=B′C′,
    所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,
    又因为EF⊄平面ABCD,BC⊂平面ABCD,
    所以EF∥平面ABCD.
    10.(2020·南昌市摸底调研)如图,在四棱锥P­ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.

    (1)求证:平面CMN∥平面PAB;
    (2)求三棱锥P­ABM的体积.
    解:(1)证明:因为M,N分别为PD,AD的中点,
    所以MN∥PA,
    又MN⊄平面PAB,PA⊂平面PAB,
    所以MN∥平面PAB.
    在Rt△ACD中,∠CAD=60°,CN=AN,
    所以∠ACN=60°.
    又∠BAC=60°,
    所以CN∥AB.
    因为CN⊄平面PAB,AB⊂平面PAB,
    所以CN∥平面PAB.
    又CN∩MN=N,所以平面CMN∥平面PAB.
    (2)由(1)知,平面CMN∥平面PAB,
    所以点M到平面PAB的距离等于点C到平面PAB的距离.
    因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=,
    所以三棱锥P­ABM的体积V=VM­PAB=VC­PAB=VP­ABC=××1××2=.
    [综合题组练]
    1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为(  )

    A.AC⊥BD
    B.AC=BD
    C.AC∥截面PQMN
    D.异面直线PM与BD所成的角为45°
    解析:选B.因为截面PQMN是正方形,
    所以PQ∥MN,QM∥PN,
    则PQ∥平面ACD,QM∥平面BDA,
    所以PQ∥AC,QM∥BD,
    由PQ⊥QM可得AC⊥BD,故A正确;
    由PQ∥AC可得AC∥截面PQMN,故C正确;
    由BD∥PN,
    所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;
    由上面可知:BD∥PN,MN∥AC.
    所以=,=,
    而AN≠DN,PN=MN,
    所以BD≠AC.B错误.故选B.
    2.如图,透明塑料制成的长方体容器ABCD­A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:

    ①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在的平面平行;④当容器倾斜如图所示时,BE·BF是定值.
    其中正确的个数是(  )
    A.1 B.2
    C.3 D.4
    解析:选C.由题图,显然①是正确的,②是错的;
    对于③因为A1D1∥BC,BC∥FG,
    所以A1D1∥FG且A1D1⊄平面EFGH,
    所以A1D1∥平面EFGH(水面).
    所以③是正确的;
    因为水是定量的(定体积V).
    所以S△BEF·BC=V,
    即BE·BF·BC=V.
    所以BE·BF=(定值),
    即④是正确的,故选C.
    3.如图,在正方体ABCD­A1B1C1D1中判断下列位置关系:

    (1)AD1所在的直线与平面BCC1的位置关系是______;
    (2)平面A1BC1与平面ABCD的位置关系是______.
    解析:(1)AD1所在直线与平面BCC1的位置关系是平行.理由:AB∥C1D1,且AB=C1D1,可得四边形ABC1D1为平行四边形,即有AD1∥BC1,AD1⊄平面BCC1,BC1⊂平面BCC1,则AD1∥平面BCC1.

    (2)平面A1BC1与平面ABCD的位置关系是相交.理由:平面A1BC1与平面ABCD有一个交点B,由公理3得,如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点在一条直线上,这条直线为交线.如图,过点B作AC的平行线l,即为交线.
    答案:平行 相交
    4.在正四棱柱ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
    解析:如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.

    答案:Q为CC1的中点
    5.如图,四边形ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.

    (1)求证:BE∥平面DMF;
    (2)求证:平面BDE∥平面MNG.
    证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.

    (2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,
    所以DE∥平面MNG.
    又M为AB的中点,
    所以MN为△ABD的中位线,
    所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,
    所以BD∥平面MNG,
    又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.
    6. (2020·南昌二模)如图,四棱锥P­ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面PAB是等腰直角三角形,PA=PB,平面PAB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面PAD.

    (1)确定点E,F的位置,并说明理由;
    (2)求三棱锥F­DCE的体积.
    解:(1)因为平面CEF∥平面PAD,平面CEF∩平面ABCD=CE,
    平面PAD∩平面ABCD=AD,
    所以CE∥AD,又AB∥DC,
    所以四边形AECD是平行四边形,
    所以DC=AE=AB,
    即点E是AB的中点.
    因为平面CEF∥平面PAD,平面CEF∩平面PAB=EF,
    平面PAD∩平面PAB=PA,
    所以EF∥PA,又点E是AB的中点,
    所以点F是PB的中点.
    综上,E,F分别是AB,PB的中点.
    (2)连接PE,由题意及(1)知PA=PB,AE=EB,
    所以PE⊥AB,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
    所以PE⊥平面ABCD.
    又AB∥CD,AB⊥AD,
    所以VF­DEC=VP­DEC=S△DEC×PE=××2×2×2=.
    相关学案

    高考数学一轮复习第6章第3节直线、平面平行的判定与性质学案: 这是一份高考数学一轮复习第6章第3节直线、平面平行的判定与性质学案,共15页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。

    (新高考)高考数学一轮考点复习7.4《直线、平面垂直的判定与性质》学案 (含详解): 这是一份(新高考)高考数学一轮考点复习7.4《直线、平面垂直的判定与性质》学案 (含详解),共19页。

    (新高考)高考数学一轮考点复习7.3《直线、平面平行的判定与性质》学案 (含详解): 这是一份(新高考)高考数学一轮考点复习7.3《直线、平面平行的判定与性质》学案 (含详解),共15页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新高考)高考数学一轮复习学案8.3《直线、平面平行的判定与性质》(含详解)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map