(新高考)高考数学一轮复习学案9.5《第2课时 直线与椭圆》(含详解)
展开第2课时 直线与椭圆
考点一 直线与椭圆的位置关系(基础型)
研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数.
1.不论k为何值,直线y=kx+1与焦点在x轴上的椭圆+=1恒有公共点,则实数m的取值范围是( )
A.(0,1) B.(0,7)
C.[1,7) D.(1,7]
解析:选C.直线y=kx+1恒过定点(0,1),由题意知(0,1)在椭圆+=1上或其内部,所以有≤1,得m≥1.又椭圆+=1的焦点在x轴上,所以m<7.综上,1≤m<7.
2.已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:
(1)有且只有一个公共点;
(2)没有公共点.
解:将直线l的方程与椭圆C的方程联立,得方程组
将①代入②,整理得9x2+8mx+2m2-4=0.③
方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.
(1)当Δ=0,即m=±3时,方程③有两个相同的实数根,
可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,
即直线l与椭圆C有且只有一个公共点.
(2)当Δ<0,即m<-3或m>3时,方程③没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.
利用判别式处理直线与椭圆的位置关系的方法
[注意] 对于椭圆方程,在第二步中得到的方程的二次项系数一定不为0,故一定为一元二次方程.
考点二 弦长问题(综合型)
设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=
已知椭圆C:+=1的左、右焦点分别为F1,F2,若斜率为-1的直线l与以线段F1F2为直径的圆相交于A,B两点,与椭圆相交于C,D,且=,求出直线l的方程.
【解】 设直线l的方程为y=-x+m,
由题意知F1,F2的坐标分别为(-1,0),(1,0),
所以以线段F1F2为直径的圆为x2+y2=1,
由题意知圆心(0,0)到直线l的距离d=<1,
得|m|<.|AB|=2=2=×,
联立得消去y,得7x2-8mx+4m2-12=0,
由题意得Δ=(-8m)2-4×7×(4m2-12)=336-48m2=48(7-m2)>0,解得m2<7,
设C(x1,y1),D(x2,y2),
则x1+x2=,x1x2=,
|CD|=|x1-x2|=× =× =×=|AB|=××,解得m2=<7,得m=±.
即存在符合条件的直线l,其方程为y=-x±.
求解直线被椭圆截得弦长的方法
(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.
(2)当直线的斜率存在时,斜率为k的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两个不同的点,则弦长|AB|==|x1-x2|=·|y1-y2|(k≠0).
已知点A(-2,0),B(0,1)在椭圆C:+=1(a>b>0)上,则椭圆C的方程为________;若直线y=x交椭圆C于M,N两点,则|MN|=________.
解析:由题意可知,椭圆C:+=1(a>b>0)的焦点在x轴上,由点A(-2,0),B(0,1)在椭圆上,则a=2,b=1,所以椭圆的标准方程为+y2=1.
设M(x1,y1),N(x2,y2),则消去y,整理得2x2=4,则x1=,x2=-,y1=,y2=-,则|MN|= =.
答案:+y2=1
考点三 中点弦问题(综合型)
对于中点弦问题,常用“根与系数的关系”或“点差法”求解.在用根与系数的关系时,要注意前提条件Δ>0;在用“点差法”时,要检验直线与圆锥曲线是否相交.
(1)已知椭圆+y2=1,则斜率为2的平行弦中点的轨迹方程为________.
(2)焦点是F(0,5),并截直线y=2x-1所得弦的中点的横坐标是的椭圆的标准方程为________.
【解析】 (1)设弦的两端点为A(x1,y1),B(x2,y2),中点为P(x0,y0),
通解:有+y=1, +y=1.
两式作差,得+(y2-y1)(y2+y1)=0.因为x1+x2=2x0,y1+y2=2y0,=kAB,代入后求得kAB=-.即2=-,所以x0+4y0=0.
优解:由kAB·kOP=-得2·=-,即x0+4y0=0.
故所求的轨迹方程为x+4y=0,将x+4y=0代入+y2=1得:+=1,解得x=±,
又中点在椭圆内,所以-<x<.
(2)通解:设所求的椭圆方程为+=1(a>b>0),直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2).
由题意,可得弦AB的中点坐标为,且=,=-.
将A,B两点坐标代入椭圆方程中,得两式相减并化简,得=-×=-2×=3,所以a2=3b2,又c2=a2-b2=50,所以a2=75,b2=25,故所求椭圆的标准方程为+=1.
优解:设弦的中点为M,由kAB·kOM=-
得2×=-,得a2=3b2,又c2=a2-b2=50,所以a2=75,b2=25,所以所求的方程为+=1.
【答案】 (1)x+4y=0
(2)+=1
解决圆锥曲线“中点弦”问题的方法
已知椭圆:+x2=1,过点P的直线与椭圆相交于A,B两点,且弦AB被点P平分,则直线AB的方程为( )
A.9x-y-4=0 B.9x+y-5=0
C.2x+y-2=0 D.x+y-5=0
解析:选B.设A(x1,y1),B(x2,y2),因为A,B在椭圆+x2=1上,所以两式相减得+x-x=0,即+(x1-x2)(x1+x2)=0,又弦AB被点P平分,所以x1+x2=1,y1+y2=1,将其代入上式得+x1-x2=0,即=-9,即直线AB的斜率为-9,所以直线AB的方程为y-=-9,即9x+y-5=0.
考点四 椭圆与向量的综合问题(创新型)
(1)已知点F1,F2是椭圆C:+y2=1的焦点,点M在椭圆C上且满足|+|=2,O为坐标原点,则△MF1F2的面积为( )
A. B.
C.2 D.1
(2)(2020·石家庄质量检测(二))倾斜角为的直线经过椭圆+=1(a>b>0)的右焦点F,与椭圆交于A、B两点,且=2,则该椭圆的离心率为( )
A. B.
C. D.
【解析】 (1)|+|=2||=2,
所以||==c,所以MF1⊥MF2,
解得|MF1||MF2|=2,
所以三角形的面积S=×|MF1|×|MF2|=1.
(2)由题可知,直线的方程为y=x-c,与椭圆方程联立得,所以(b2+a2)y2+2b2cy-b4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A(x1,y1),B(x2,y2),则,又=2,所以(c-x1,-y1)=2(x2-c,y2),所以-y1=2y2,可得,所以=,所以e=,故选B.
【答案】 (1)D (2)B
解决椭圆中与向量有关问题的方法
(1)将向量条件用坐标表示,再利用函数、方程知识建立数量关系.
(2)利用向量关系转化成相关的等量关系.
(3)利用向量运算的几何意义转化成图形中位置关系解题.
1.已知F1,F2为椭圆+=1(a>b>0)的两个焦点,B为椭圆短轴的一个端点,·≥2,则椭圆的离心率的取值范围为( )
A. B.
C. D.
解析:选C.根据题意不妨设B(0,b),F1(-c,0),F2(c,0),因为·≥2,
所以b2≥2c2,又因为b2=a2-c2,
所以a2≥3c2,所以0<≤.
2.若直线l:y=kx+与椭圆+y2=1有两个不同的交点A,B,且·=2(O为坐标原点),求k的值.
解:设A(x1,y1),B(x2,y2),
联立方程得消去y得x2+2kx+1=0,
则有Δ=4k2-1>0,得k2>.
x1+x2=-,x1x2=,
则·=x1x2+y1y2=x1x2+(kx1+)(kx2+)=(1+k2)x1x2+k(x1+x2)+2==2.
得k2=>,所以k的值为±.
[基础题组练]
1.直线y=x+2与椭圆+=1有两个公共点,则m的取值范围是( )
A.(1,+∞) B.(1,3)∪(3,+∞)
C.(3,+∞) D.(0,3)∪(3,+∞)
解析:选B.由得(m+3)x2+4mx+m=0.由Δ>0且m≠3及m>0得m>1且m≠3.
2.设直线y=kx与椭圆+=1相交于A,B两点,分别过A,B两点向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于( )
A.± B.±
C.± D.±2
解析:选A.由题意可知,点A与点B的横坐标即为焦点的横坐标,又c=1,当k>0时,不妨设A,B两点的坐标分别为(-1,y1),(1,y2),代入椭圆方程得y1=-,y2=,解得k=;同理可得当k<0时k=-.
3.过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B.
C. D.
解析:选B.由题意知椭圆的右焦点F的坐标为(1,0),则直线AB的方程为y=2x-2.联立解得交点A(0,-2),B,所以S△OAB=·|OF|·|yA-yB|=×1×=,故选B.
4.已知椭圆C:+=1(a>b>0)与直线y=x+3只有一个公共点,且椭圆的离心率为,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选B.将直线方程y=x+3代入C的方程并整理得(a2+b2)x2+6a2x+9a2-a2b2=0,由椭圆与直线只有一个公共点得,Δ=(6a2)2-4(a2+b2)(9a2-a2b2)=0,化简得a2+b2=9.又由椭圆的离心率为,所以==,则=,解得a2=5,b2=4,所以椭圆的方程为+=1.
5.(2020·石家庄质检)倾斜角为的直线经过椭圆+=1(a>b>0)的右焦点F,与椭圆交于A,B两点,且=2,则该椭圆的离心率为( )
A. B.
C. D.
解析:选B.由题可知,直线的方程为y=x-c,与椭圆方程联立得(b2+a2)y2+2b2cy-b4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A(x1,y1),B(x2,y2),则又=2,所以(c-x1,-y1)=2(x2-c,y2),所以-y1=2y2,可得所以=,所以e=,故选B.
6.已知椭圆+=1(a>b>0)的右顶点为A(1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为________.
解析:因为椭圆+=1的右顶点为A(1,0),所以b=1,焦点坐标为(0,c),因为过焦点且垂直于长轴的弦长为1,所以=1,a=2,所以椭圆方程为+x2=1.
答案:+x2=1
7.已知椭圆+y2=1与直线y=x+m交于A,B两点,且|AB|=,则实数m的值为________.
解析:由消去y并整理,得3x2+4mx+2m2-2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.由题意,得=,
解得m=±1.
答案:±1
8.已知直线l:y=k(x-1)与椭圆C:+y2=1交于不同的两点A,B,AB中点横坐标为,则k=________.
解析:设A(x1,y1),B(x2,y2),由得(4k2+1)x2-8k2x+4k2-4=0,因为直线l过椭圆内的定点(1,0),所以Δ>0,x1+x2=,所以==,即k2=,所以k=±.
答案:±
9.设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
解:(1)根据c=及题设知M,=,
2b2=3ac.
将b2=a2-c2代入2b2=3ac,解得=,=-2(舍去).故C的离心率为.
(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,
故=4,即b2=4a.①
由|MN|=5|F1N|得|DF1|=2|F1N|.
设N(x1,y1),由题意知y1<0,则
即
代入C的方程,得+=1.②
将①及c=代入②得+=1.
解得a=7,b2=4a=28,故a=7,b=2.
10.已知椭圆C的两个焦点为F1(-1,0),F2(1,0),且经过点E.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C交于A,B两点(点A位于x轴上方),若=2,求直线l的斜率k的值.
解:(1)由解得
所以椭圆C的方程为+=1.
(2)由题意得直线l的方程为y=k(x+1)(k>0),联立,得
整理得y2-y-9=0,
Δ=+144>0,设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=,又=2,所以y1=-2y2,所以y1y2=-2(y1+y2)2,则3+4k2=8,解得k=±,又k>0,所以k=.
[综合题组练]
1.设F1,F2分别是椭圆+y2=1的左、右焦点,若椭圆上存在一点P,使(+)·=0(O为坐标原点),则△F1PF2的面积是( )
A.4 B.3
C.2 D.1
解析:选D.因为(+)·=(+)·=·=0,所以PF1⊥PF2,∠F1PF2=90°.设|PF1|=m,|PF2|=n,则m+n=4,m2+n2=12,2mn=4,mn=2,所以S△F1PF2=mn=1.
2.直线l过椭圆+y2=1的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若△FMO是以OF为底边的等腰三角形,则直线l的斜率为( )
A. B.±
C.± D.
解析:选B.由+y2=1,得a2=2,b2=1,所以c2=a2-b2=2-1=1,则c=1,则左焦点F(-1,0).由题意可知,直线l的斜率存在且不等于0,设直线l的方程为y=kx+k.设l与椭圆交于点P(x1,y1),Q(x2,y2),联立得(2k2+1)x2+4k2x+2k2-2=0.则PQ的中点M的横坐标为=-.因为△FMO是以OF为底边的等腰三角形,所以-=-,解得k=±.
3.从椭圆+=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.
解析:由题意可设P(-c,y0)(c为半焦距),kOP=-,kAB=-,由于OP∥AB,所以-=-,y0=,把P代入椭圆方程得+=1,
所以=,所以e==.
答案:
4.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则椭圆的离心率的取值范围为________.
解析:设椭圆的方程为+=1(a>b>0),∠B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)<0,得b2<ac,即a2-c2<ac,故+-1>0即e2+e-1>0,e>或e<,又0<e<1,所以<e<1.
答案:
5.已知F1,F2是椭圆C:+=1(a>b>0)的左,右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足=2.
(1)求椭圆C的方程;
(2)求四边形ABF2F1的面积.
解:(1)由题意知2a=6,2c=4,所以a=3,c=2,
所以b2=a2-c2=5,所以椭圆C的方程为+=1.
(2)设A(x1,y1),B(x2,y2),又F1(-2,0),F2(2,0),
所以=(-2-x1,-y1),=(2-x2,-y2),
由=2,得x1+2=2(x2-2),y1=2y2.
延长AB交x轴于H,因为=2,所以AF1∥BF2,且|AF1|=2|BF2|.所以线段BF2为△AF1H的中位线,即F2为线段F1H的中点,所以H(6,0).设直线AB的方程为x=my+6,
代入椭圆方程,得5(my+6)2+9y2=45,即(5m2+9)y2+60my+135=0.
所以y1+y2=-=3y2,y1·y2==2y,
消去y2,得m2=,结合题意知m=-.
S=S-S=|F1H|y1-|F2H|y2=4y1-2y2=8y2-2y2=6y2
=-=.
6.(2020·安徽五校联盟第二次质检)已知椭圆C:+=1(a>b>0)的焦点坐标分别为F1(-1,0),F2(1,0),P为椭圆C上一点,满足3|PF1|=5|PF2|且cos∠F1PF2=.
(1)求椭圆C的标准方程;
(2)设直线l:y=kx+m与椭圆C交于A,B两点,
点Q,若|AQ|=|BQ|,求k的取值范围.
解:(1)由题意设|PF1|=r1,|PF2|=r2,则3r1=5r2,又r1+r2=2a,所以r1=a,r2=a.
在△PF1F2中,由余弦定理得,cos∠F1PF2===,
解得a=2,因为c=1,所以b2=a2-c2=3,所以椭圆C的标准方程为+=1.
(2)联立方程,得,消去y得(3+4k2)x2+8kmx+4m2-12=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,且Δ=48(3+4k2-m2)>0,①
设AB的中点为M(x0,y0),连接QM,则x0==,y0=kx0+m=,因为|AQ|=|BQ|,所以AB⊥QM,又Q,M为AB的中点,所以k≠0,直线QM的斜率存在,所以k·kQM=k·=-1,解得m=-,②
把②代入①得3+4k2>,整理得16k4+8k2-3>0,即(4k2-1)(4k2+3)>0,解得k>或k<-,故k的取值范围为∪.
高考数学一轮复习第8章第6课时直线与椭圆学案: 这是一份高考数学一轮复习第8章第6课时直线与椭圆学案,共28页。
(新高考)高考数学一轮复习学案9.5《第1课时 椭圆及其性质》(含详解): 这是一份(新高考)高考数学一轮复习学案9.5《第1课时 椭圆及其性质》(含详解),共16页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
(新高考)高考数学一轮考点复习8.4《椭圆》学案 (含详解): 这是一份(新高考)高考数学一轮考点复习8.4《椭圆》学案 (含详解),共24页。