所属成套资源:(新高考)高考数学一轮复习分层突破练习 (含详解)
(新高考)高考数学一轮复习分层突破练习3.2《函数的单调性与最值》(含详解)
展开
这是一份(新高考)高考数学一轮复习分层突破练习3.2《函数的单调性与最值》(含详解),共6页。
[基础题组练]1.下列四个函数中,在x∈(0,+∞)上为增函数的是( )A.f(x)=3-x B.f(x)=x2-3xC.f(x)=- D.f(x)=-|x|解析:选C.当x>0时,f(x)=3-x为减函数;当x∈时,f(x)=x2-3x为减函数,当x∈时,f(x)=x2-3x为增函数;当x∈(0,+∞)时,f(x)=-为增函数;当x∈(0,+∞)时,f(x)=-|x|为减函数.2.函数f(x)=-x+在上的最大值是( )A. B.-C.-2 D.2解析:选A.函数f(x)=-x+的导数为f′(x)=-1-,则f′(x)<0,可得f(x)在上单调递减,即f(-2)为最大值,且为2-=.3.已知函数f(x)为R上的减函数,则满足f<f(1)的实数x的取值范围是( )A.(-1,1) B.(0,1)C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞)解析:选C.由f(x)为R上的减函数且f<f(1),得即所以-1<x<0或0<x<1.故选C.4.(多选)(2021·预测)已知f(x)是定义在[0,+∞)上的函数,根据下列条件,可以断定f(x)是增函数的是( )A.对任意x≥0,都有f(x+1)>f(x)B.对任意x1,x2∈[0,+∞),且x1≥x2,都有f(x1)≥f(x2) C.对任意x1,x2∈[0,+∞),且x1-x2<0,都有f(x1)-f(x2)<0D.对任意x1,x2∈[0,+∞),且x1≠x2,都有>0解析:选CD.根据题意,依次分析选项:对于选项A,对任意x≥0,都有f(x+1)>f(x),不满足函数单调性的定义,不符合题意;对于选项B,当f(x)为常数函数时,对任意x1,x2∈[0,+∞),都有f(x1)=f(x2),不是增函数,不符合题意;对于选项C,对任意x1,x2∈[0,+∞),且x1-x2<0,都有f(x1)-f(x2)<0,符合题意;对于选项D,对任意x1,x2∈[0,+∞),设x1>x2,若>0,必有f(x1)-f(x2)>0,则函数在[0,+∞)上为增函数,符合题意.5.(创新型)定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1 B.1 C.6 D.12解析:选C.由题意知当-2≤x≤1时,f(x)=x-2,当1<x≤2时,f(x)=x3-2,又f(x)=x-2,f(x)=x3-2在相应的定义域内都为增函数,且f(1)=-1,f(2)=6,所以f(x)的最大值为6.6.函数f(x)=|x-2|x的单调减区间是________.解析:由于f(x)=|x-2|x=结合图象可知函数的单调减区间是[1,2].答案:[1,2]7.函数y=2+的最大值是________,单调递增区间是________.解析:函数y=2+=2+,可得当x=2时,函数y取得最大值2+2=4;由4x-x2≥0,可得0≤x≤4,令t=-x2+4x,则t在[0,2]上为增函数,y-2+在[0,+∞)上为增函数,可得函数y=2+的单调递增区间为[0,2].答案:4 [0,2]8.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集为________.解析:由函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,知不等式-3<f(x+1)<1,即为f(0)<f(x+1)<f(3),所以0<x+1<3,所以-1<x<2.答案:(-1,2)9.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.解:(1)证明:任取x1>x2>0,则f(x1)-f(x2)=--+=,因为x1>x2>0,所以x1-x2>0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)在(0,+∞)上是增函数.(2)由(1)可知,f(x)在上为增函数,所以f=-2=,f(2)=-=2,解得a=.10.已知f(x)=(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)上单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.解:(1)证明:设x1<x2<-2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)<f(x2),所以f(x)在(-∞,-2)上单调递增.(2)设1<x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,所以a≤1.综上所述,a的取值范围为(0,1].[综合题组练]1.已知函数f(x)=对任意的x1≠x2都有(x1-x2)[f(x2)-f(x1)]>0成立,则实数a的取值范围是( )A.(-∞,3] B.(-∞,3) C.(3,+∞) D.[1,3)解析:选D.由(x1-x2)[f(x2)-f(x1)]>0,得(x1-x2)·[f(x1)-f(x2)]<0,所以函数f(x)在R上单调递减,所以解得1≤a<3.故选D.2.(多选)若函数f(x)满足条件:①对于定义域内任意不相等的实数a,b恒有>0;②对于定义域内任意x1,x2都有f≥成立.则称其为G函数.下列函数为G函数的是( )A.f(x)=3x+1B.f(x)=-2x-1C.f(x)=x2-2x+3D.f(x)=-x2+4x-3,x∈(-∞,1)解析:选AD.①对于定义域内任意不相等的实数a,b恒有>0,则函数f(x)在定义域为增函数;②对于定义域内任意x1,x2都有f≥成立,则函数f(x)为“凸函数”.其中A.f(x)=3x+1在R上为增函数,且f=,故满足条件①②;B.f(x)=-2x-1在R上为减函数,不满足条件①;C.f(x)=x2-2x+3在(-∞,1)上为减函数,在(1,+∞)为增函数,不满足条件①;D.f(x)=-x2+4x-3的对称轴为x=2,故函数f(x)=-x2+4x-3在(-∞,1)上为增函数,且为“凸函数”,故满足条件①②.综上,为G函数的是AD.3.设f(x)=若f(0)是f(x)的最小值,则a的取值范围为________.解析:因为当x≤0时,f(x)=(x-a)2,f(0)是f(x)的最小值,所以a≥0.当x>0时,f(x)=x++a≥2+a,当且仅当x=1时取“=”.要满足f(0)是f(x)的最小值,需2+a≥f(0)=a2,即a2-a-2≤0,解得-1≤a≤2,所以a的取值范围是0≤a≤2.答案:[0,2]4.(创新型)如果函数y=f(x)在区间I上是增函数,且函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”.若函数f(x)=x2-x+是区间I上的“缓增函数”,则“缓增区间”I为________.解析:因为函数f(x)=x2-x+的对称轴为x=1,所以函数y=f(x)在区间[1,+∞)上是增函数,又当x≥1时,=x-1+,令g(x)=x-1+(x≥1),则g′(x)=-=,由g′(x)≤0得1≤x≤,即函数=x-1+在区间[1, ]上单调递减,故“缓增区间”I为[1, ].答案:[1, ]5.已知函数f(x)=x2+a|x-2|-4.(1)当a=2时,求f(x)在[0,3]上的最大值和最小值;(2)若f(x)在区间[-1,+∞)上单调递增,求实数a的取值范围.解:(1)当a=2时,f(x)=x2+2|x-2|-4==,当x∈[0,2)时,-1≤f(x)<0,当x∈[2,3]时,0≤f(x)≤7,所以f(x)在[0,3]上的最大值为7,最小值为-1.(2)因为f(x)=,又f(x)在区间[-1,+∞)上单调递增,所以当x>2时,f(x)单调递增,则-≤2,即a≥-4.当-1<x≤2时,f(x)单调递增,则≤-1.即a≤-2,且4+2a-2a-4≥4-2a+2a-4恒成立,故a的取值范围为[-4,-2].6.已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)证明:f(x)为单调递减函数;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)证明:任取x1,x2∈,且x1>x2,则>1,由于当x>1时,f(x)<0,所以f<0,即f(x1)-f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间上是单调递减函数.(3)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[2,9]上的最小值为f(9),由f=f(x1)-f(x2)得f=f(9)-f(3),而f(3)=-1,所以f(9)=-2.所以f(x) 在[2,9]上的最小值为-2.
相关试卷
这是一份2024年(新高考)高考数学一轮复习突破练习4.4《导数与函数的最值》(含详解),共6页。试卷主要包含了4《导数与函数的最值》,故选C等内容,欢迎下载使用。
这是一份2024年(新高考)高考数学一轮复习突破练习3.2《函数的单调性与最值》(含详解),共5页。试卷主要包含了2《函数的单调性与最值》,综上所述,M﹣N的最小值为1等内容,欢迎下载使用。
这是一份高考数学一轮复习 专题3.2 函数的单调性与最值(练),文件包含专题32函数的单调性与最值练教师版docx、专题32函数的单调性与最值练学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。