(新高考)高考数学一轮复习分层突破练习4.4《第3课时 利用导数探究函数的零点问题》(含详解)
展开[基础题组练]
1.(2020·江西七校第一次联考)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+>0,则函数F(x)=x·f(x)-的零点个数是( )
A.0 B.1
C.2 D.3
解析:选B.函数F(x)=xf(x)-的零点,就是方程xf(x)-=0的根,即方程xf(x)=的根.令函数g(x)=xf(x),则g′(x)=f(x)+xf′(x).因为当x>0时,g′(x)=f(x)+xf′(x)>0,所以g(x)=xf(x)单调递增,g(x)>g(0)=0;当x<0时,g′(x)=f(x)+xf′(x)<0,所以g(x)=xf(x)单调递减,g(x)>g(0)=0.所以函数y=g(x)与y=的图象只有一个交点,即F(x)=xf(x)-只有一个零点.故选B.
2.若函数f(x)=+1(a<0)没有零点,则实数a的取值范围为________.
解析:f′(x)==(a<0).
当x<2时,f′(x)<0;当x>2时,f′(x)>0,
所以当x=2时,f(x)有极小值f(2)=+1.
若使函数f(x)没有零点,当且仅当f(2)=+1>0,
解得a>-e2,因此-e2<a<0.
答案:(-e2,0)
3.已知函数f(x)=a+ln x(a∈R).
(1)求f(x)的单调区间;
(2)试判断f(x)的零点个数.
解:(1)函数f(x)的定义域是(0,+∞),
f′(x)=()′ln x+·
=,
令f′(x)>0,解得x>e-2,
令f′(x)<0,解得0<x<e-2,
所以f(x)在(0,e-2)上单调递减,
在(e-2,+∞)上单调递增.
(2)由(1)得f(x)min=f(e-2)=a-,
显然a>时,f(x)>0,无零点,
a=时,f(x)=0,有1个零点,
a<时,f(x)<0,有2个零点.
4.(2020·保定调研)已知函数f(x)=x3-x2-ax-2的图象过点A.
(1)求函数f(x)的单调递增区间;
(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.
解:(1)因为函数f(x)=x3-x2-ax-2的图象过点A,
所以-4a-4a-2=,解得a=2,
即f(x)=x3-x2-2x-2,
所以f′(x)=x2-x-2.
由f′(x)>0,得x<-1或x>2.
所以函数f(x)的单调递增区间是(-∞,-1),(2,+∞).
(2)由(1)知f(x)极大值=f(-1)=--+2-2=-,
f(x)极小值=f(2)=-2-4-2=-,
由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,
则-<2m-3<-,
解得-<m<.
所以m的取值范围为.
5.(2019·高考全国卷Ⅱ)已知函数f(x)=(x-1)ln x-x-1.证明:
(1)f(x)存在唯一的极值点;
(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.
证明:(1)f(x)的定义域为(0,+∞).
f′(x)=+ln x-1=ln x-.
因为y=ln x单调递增,y=单调递减,所以f′(x)单调递增.又f′(1)=-1<0,
f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.
又当x<x0时,f′(x)<0,f(x)单调递减;当x>x0时,f′(x)>0,f(x)单调递增.
因此,f(x)存在唯一的极值点.
(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.
由α>x0>1得<1<x0.
又f=ln --1==0,故是f(x)=0在(0,x0)的唯一根.
综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.
6.(2020·武昌区调研考试)已知函数f(x)=aex-aex-1,g(x)=-x3-x2+6x,其中a>0.
(1)若曲线y=f(x)经过坐标原点,求该曲线在原点处的切线方程;
(2)若f(x)=g(x)+m在[0,+∞)上有解,求实数m的取值范围.
解:(1)因为f(0)=a-1=0,所以a=1,此时f(x)=ex-ex-1.
所以f′(x)=ex-e,f′(0)=1-e.
所以曲线y=f(x)在原点处的切线方程为y=(1-e)x.
(2)因为f(x)=aex-aex-1,所以f′(x)=aex-ae=a(ex-e).
当x>1时,f′(x)>0;当0<x<1时,f′(x)<0.
所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
所以当x∈[0,+∞)时,f(x)min=f(1)=-1.
令h(x)=g(x)+m=-x3-x2+6x+m,
则h′(x)=-3x2-3x+6=-3(x+2)(x-1).
当x>1时,h′(x)<0;当0<x<1时,h′(x)>0.
所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以当x∈[0,+∞)时,h(x)max=h(1)=+m.
要使f(x)=g(x)+m在[0,+∞)上有解,则+m≥-1,即m≥-.
所以实数m的取值范围为.
2024年(新高考)高考数学一轮复习突破练习4.5《第3课时 利用导数探究函数的零点问题》(含详解): 这是一份2024年(新高考)高考数学一轮复习突破练习4.5《第3课时 利用导数探究函数的零点问题》(含详解),共7页。
高中数学高考3 第3课时 利用导数探究函数的零点问题: 这是一份高中数学高考3 第3课时 利用导数探究函数的零点问题,共9页。
(新高考)高考数学一轮复习分层突破练习4.4《第2课时 利用导数研究不等式的恒成立问题》(含详解): 这是一份(新高考)高考数学一轮复习分层突破练习4.4《第2课时 利用导数研究不等式的恒成立问题》(含详解),共4页。