所属成套资源:(新高考)高考数学一轮复习分层突破练习 (含详解)
(新高考)高考数学一轮复习分层突破练习11.1《随机抽样、用样本估计总体》(含详解)
展开
这是一份(新高考)高考数学一轮复习分层突破练习11.1《随机抽样、用样本估计总体》(含详解),共6页。
[基础题组练]1.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 3520 96 43 84 26 34 91 64 57 24 55 0688 77 04 74 47 67 21 76 33 50 25 8392 12 06A.23 B.09 C.02 D.16解析:选D.从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.2.(2020·陕西汉中重点中学联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示: 不喜欢喜欢男性青年观众3010女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n人做进一步的调研,若在“不喜欢的男性青年观众”中抽取了6人,则n=( )A.12 B.16 C.20 D.24解析:选D.由题意得==,解得n=24.故选D.3.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数 B.平均数 C.方差 D.极差解析:选A.记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A.4.(多选)某学生5次考试的成绩(单位:分)分别为85,67,m,80,93,其中m>0.若该学生在这5次考试中成绩的中位数为80,则得分的平均数可能为( )A.70 B.75 C.80 D.85解析:选ABC.已知的四次成绩按照由小到大的顺序排列为67,80,85,93,该学生这5次考试成绩的中位数为80,则m≤80,所以平均数≤81,可知平均数可能为70,75,80,不可能为85.故选ABC.5.(多选)从某地区年龄在25~55岁的人员中,随机抽取100人,了解他们对今年两会热点问题的看法,绘制出频率分布直方图,如图所示,则下列说法正确的是( )A.抽取的100人中,年龄在40~45岁的人数大约为20B.抽取的100人中,年龄在35~45岁的人数大约为40C.抽取的100人中,年龄在40~50岁的人数大约为50D.抽取的100人中,年龄在35~50岁的人数大约为60解析:选AD.根据频率分布直方图的性质得(0.01+0.05+0.06+a+0.02+0.02)×5=1,解得a=0.04,所以抽取的100人中,年龄在40~45岁的大约为0.04×5×100=20,所以A正确;年龄在35~45岁的人数大约为(0.06+0.04)×5×100=50,所以B不正确;年龄在40~50岁的人数大约为(0.04+0.02)×5×100=30,所以C不正确;年龄在35~50岁的人数大约为(0.06+0.04+0.02)×5×100=60,所以D正确.故选AD.6.(2020·开封市定位考试)某工厂生产A,B,C三种不同型号的产品,产品数量之比为k∶5∶3,现用分层抽样的方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为________.解析:依题意得=,解得k=2,所以C种型号产品抽取的件数为×120=36.答案:367.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示: 甲乙丙丁平均环数8.38.88.88.7方差s23.53.62.25.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是________.解析:由题表中数据可知,丙的平均环数最高,且方差最小,说明技术稳定,且成绩好.答案:丙8.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:(1)0.04 (2)4409.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:成绩分组频数频率平均分[0,20)30.01516[20,40)ab32.1[40,60)250.12555[60,80)c0.574[80,100]620.3188(1)求a、b、c的值;(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.所以P==0.81.(3)这次数学测验样本的平均分为==73,所以这次数学测验的年级平均分大约为73分.10.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(2)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A在这10天投递的快递件数的平均数为36,众数为33.(2)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为4.5×36×30=4 860(元),易知乙公司员工B每天所得劳务费X的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为×(136×1+147×3+154×2+189×3+203×1)×30=165.5×30=4 965(元).[综合题组练]1.(2020·安徽五校联盟第二次质检)数据a1,a2,a3,…,an的方差为σ2,则数据2a1,2a2,2a3,…,2an的方差为( )A. B.σ2C.2σ2 D.4σ2解析:选D.设a1,a2,a3,…,an的平均数为a,则2a1,2a2,2a3,…,2an的平均数为2a,σ2=.则2a1,2a2,2a3,…,2an的方差为=4×=4σ2.故选D.2.(多选)新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出版产品供给,实现了行业的良性发展.下面是2015年至2019年我国新闻出版业和数字出版业营收情况,则下列说法正确的是( )A.2015年至2019年我国新闻出版业和数字出版业营收均逐年增加B.2019年我国数字出版业营收超过2015年我国数字出版业营收的2倍C.2019年我国新闻出版业营收超过2015年我国新闻出版业营收的1.5倍D.2019年我国数字出版业营收占新闻出版业营收的比例未超过三分之一解析:选ABD.根据图示数据可知A正确;1 935.5×2=3 871<5 720.9,故B正确;16 635.3×1.5=24 952.95>23 595.8,故C不正确;23 595.8×≈7 865>5 720.9,故D正确.故选ABD.3.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.甲==13;乙==13,s=[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4;s=[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s>s,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.4.(2020·广州市调研测试)某蔬果经销商销售某种蔬果,售价为每千克25元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每千克10元处理完.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250千克该种蔬果,假设当天的需求量为x千克(0≤x≤500),利润为y元.求y关于x的函数关系式,并结合频率分布直方图估计利润y不小于1 750元的概率.解:(1)=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.002 5×100+450×0.001 5×100=265.故该种蔬果日需求量的平均数为265千克.(2)当日需求量不低于250千克时,利润y=(25-15)×250=2 500(元),当日需求量低于250千克时,利润y=(25-15)x-(250-x)×5=15x-1 250(元),所以y=,由y≥1 750,得200≤x≤500,所以P(y≥1 750)=P(200≤x≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7.故估计利润y不小于1 750元的概率为0.7.
相关试卷
这是一份2024年(新高考)高考数学一轮复习突破练习11.1《随机抽样、用样本估计总体》(含详解),共7页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习分层突破练习9.7《抛物线》(含详解),共7页。
这是一份(新高考)高考数学一轮复习分层突破练习9.6《双曲线》(含详解),共8页。