2021湖州德清县三中高二下学期返校考试数学试题含答案
展开
这是一份2021湖州德清县三中高二下学期返校考试数学试题含答案,共12页。
德清三中2020学年第二学期返校考试卷高二 数学本试卷满分150分,考试时间120分钟选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角是( )A.45° B.60° C.120° D.135°2.在空间直角坐标系中,,,则A,B两点的距离是( )A.6 B.4 C.6 D.23.准线为的抛物线标准方程是( )A. B. C. D.4.圆:,圆:,则圆与圆的位置关系为( )A.相交 B.相离 C.内切 D.外切5.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知双曲线G:的左、右焦点分别为、,若点P在G的右支上,且,则( )A.3 B.5 C. D.7.已知过点的直线l被圆截得的弦长为,则直线l的方程是( )A. B.C.或 D.或8.已知m,n是两条直线,,是两个平面,则下列命题中错误的是( )A.若,,,则B.若,,则C.若,,,则D.若,,,则9.如图,在棱长为1的正方体中,点M是底面正方形的中心,点P是底面所在平面内的一个动点,且满足,则动点P的轨迹为( )A.圆 B.抛物线 C.双曲线 D.椭圆9.已知直线:与直线:分别过定点A,B,且交于点P,则的最大值是( )A.5 B.5 C.8 D.1010.如图,已知正方体的棱长为4,E为棱的中点,点P在侧面上运动.当平面与平面、平面所成的角相等时,则的最小值为( )A. B. C. D.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.12.双曲线的焦距是_________,渐近线方程是_________.13.直线:,直线:,若,则________;若,则________.14.若某几何体的三视图(单位:)如图所示,则该几何体的体积是_________,最长的棱长是_________.15.已知过点,且斜率为k的动直线l与抛物线C:相交于B,C两点,则k的取值范围为_________;若N为抛物线C上一动点,M为线段中点,则点M的轨迹方程为____________.16.长、宽、高分别为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为__________.17.如图,在侧棱垂直于底面的三棱柱中,,,E,F分别是,的中点,则异面直线与所成角的余弦值是________.18.已知,是椭圆C:的焦点,若椭圆C上存在点P,使,则椭圆C的离心率的取值范围是________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.19.(本题满分14分)设圆C的半径为r,圆心C是直线与直线的交点.(Ⅰ)若圆C过原点O,求圆C的方程;(Ⅱ)已知点,若圆C上存在点M,使,求r的取值范围.20.(本题满分15分)如图,已知三棱锥﹐,是边长为的正三角形,,,点F为线段的中点.(Ⅰ)证明:平面;(Ⅱ)求直线与平面所成角的大小.21.(本题满分15分)已知抛物线,与圆F:,直线:与抛物线相交于M,N两点.(1)求证:.(2)若直线与圆F相切,求的面积S.22.(本题满分15分)如图,在三棱锥中,,,,E,F分别是,的中点,M是上一点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值的最大值.23.(本题满分15分)已知椭圆E:()的左右焦点分别为,,其离心率为,点在椭圆E上.(1)求椭圆E的标准方程;(2)经过椭圆E的左焦点作斜率之积为的两条直线,,直线交椭圆E于A,B,直线交椭圆E于C,D,G,H分别是线段,的中点,求面积的最大值.答案一、选择题1.【答案】A 2.【答案】C 3.【答案】A 4.【答案】D5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C9.【答案】D 10.【答案】D11.【答案】A解:如图,设点F为的中点,点P在平面内的射影为,则在平面内的射影为,在平面内的射影为.由于平面与平面、平面所成的角相等,则,故.由于,从而,即点P到直线的距离.设点由此点M为的中点,则点P在线段上运动.故的最小值即为点到直线的距离.二、填空题12.【答案】;13.【答案】-1;414.【答案】20;15.【答案】(1)或 (2)16.【答案】17.【答案】18.【答案】三、解答题19.解:(1)由,得,所以圆心.又∵圆C过原点O,∴∴圆C的方程为:································································7分.(2)设,由,得:,化简,得:.∴点M在以为圆心,半径为2的圆上.又∵点M在圆C:上,∴,即,∴.·········································································14分.20.解(1)∵,,∴,∴∵∴平面.······································································7分(2)∵平面,∴平面平面作,交于H,连接,∵平面,平面平面∴平面∴就是直线与平面所成角.·······················································11分∵为正三角形,∴且H是中点,∴,∴.·····································································15分21.解(1)设,联立,∴ ∵,∴,即.··········································································7分(2)∵直线与圆相切, ∴,∴原点到直线的距离,···························································10分,.············································································15分22.解法一:(1)∵,F是中点;∴∵,E,F分别是,的中点;∴又∵,∴面····································································7分(2)过A作于H∵面,面,∴∵,E为中点,∴又∵ ∴面∴,又,∴面∴在平面上的射影是∴即为与平面所成的角中,,中,,∴.··········································································14分解法二:解:(Ⅰ)建系如图,则,,∵,设则,解得,∴,∴,,∴,∴平面.·······································································7分(Ⅱ),,设平面的一个法向量设则设直线与平面所成角为············································································14分23.解(1)因为,得,则,又椭圆经过点,则,即,故椭圆E的标准方程为.····························································6分.(2)设直线的斜率为,则:,设,,联立得,,,,··········································································8分.的中点,同理可得的中点,,所以,,···································································10分.则:.令得,所以在x轴上的交点为,·····················································12分.所以,令,,因为,,即面积的最大值.·························································15分.
相关试卷
这是一份2021三亚华侨学校(丹湖校区)高二下学期返校考试数学试题PDF版含答案
这是一份2021湖州中学高三下学期返校考试数学试卷PDF版含答案
这是一份2021湖州高二下学期期末数学试题PDF版含答案,文件包含数学答案pdf、数学试题PDF版可编辑pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。