2021省哈尔滨延寿县二中高二上学期期中考试数学试题含答案
展开
这是一份2021省哈尔滨延寿县二中高二上学期期中考试数学试题含答案,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
延寿二中2020~2021学年度第一学期期中考试高二数学试题(满分:150分,时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤02.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A.0.95 B.0.7 C.0.35 D.0.053.总体容量为203,若采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体( )A.4 B.5 C.6 D.74.在线段[0,3]上任取一点,则此点坐标大于1的概率是( )A. B. C. D.5.“(2x-1)x=0”是“x=0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数1213241516137则样本数据落在(10,40]上的频率为( )A.0.13 B.0.39 C.0.52 D.0.647.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg属于偏胖,低于55 kg属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的纵坐标分别为0.05,0.04,0.02,0.01,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为( )A.1 000,0.50 B.800,0.50C.800,0.60 D.1 000,0.608.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则乙的平均成绩超过甲的平均成绩的概率为( )A. B. C. D.9.已知命题>0;命题.下列命题为真命题的是( )A. B. C. D. 10.为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:购买食品的年支出费用x/万元2.092.152.502.842.92购买水果和牛奶的年支出费用y/万元1.251.301.501.701.75根据上表可得回归直线方程=x+,其中=0.59,=-,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )A.1.795万元 B.2.555万元C.1.915万元 D.1.945万元 11.在如图所示的程序框图中,如果输入的n=5,那么输出的i等于( )A.3 B.4 C.5 D.612.一正方形地砖的图案如图所示,其内部花形是以正方形边长的一半为直径作弧而得到的,若一只蚂蚁落在该地砖内,则它恰好在阴影部分的概率为( )A.-1 B.-C.- D.- 二、填空题(本大题共4小题,每小题5分,共20分)13.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.14.从3男3女共6名同学中任取2名,这两名同学都是女同学的概率为________.15.已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围为________.16.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A、B两点,则弦长|AB|≥2的概率为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.18.(本题满分12分)已知集合A={x|x2-3x+2=0},B={x|x2-mx+1=0},若A是B的必要不充分条件,求实数m的取值范围. 19.(12分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如图所示.(1)计算样本的平均成绩及方差;(2)在这10个样本中,现从不低于84分的成绩中随机抽取2个,求93分的成绩被抽中的概率. 20.(12分)某培训班共有n名学生,现将一次某学科考试成绩(单位:分)绘制成频率分布直方图,如图所示.其中落在[80,90)内的频数为36.(1)请根据图中所给数据,求出a及n的值;(2)从如图5组中按分层抽样的方法选取40名学生的成绩作为一个样本,求在第一组、第五组(从左到右)中分别抽取了几名学生的成绩;(3)在(2)抽取的样本中的第一与第五组中,随机抽取两名学生的成绩,求所取两名学生的平均分不低于70分的概率. 21.(12分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:商店名称ABCDE销售额x/千万元35679利润额y/百万元23345 (1)画出散点图,观察散点图,说明两个变量有怎样的相关性;(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为4(千万元)时,估计利润额的大小.(注:=,=-)22.(12分)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数和方差s2(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于32.5克的即为优质果实.若所取样本容量n=40,从该样本分布在[27.5,32.5)和[47.5,52.5]的果实中,随机抽取2个,求抽到的都是优质果实的概率.
2020-2021学年度高二期中考试数学试题(满分:150分,时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:选D 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A.0.95 B.0.7 C.0.35 D.0.05解析:选D “抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.3.总体容量为203,若采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体( )A.4 B.5 C.6 D.7解析:选D 由于203=7×29,即203在四个选项中只能被7整除,故间隔为7时不需剔除个体.4.在线段[0,3]上任取一点,则此点坐标大于1的概率是( )A. B. C. D.解析:选B 根据几何概型可知,在线段[0,3]上任取一点,则此点坐标大于1的坐标就是1<x≤3,∴所求的概率为,故选B.5.“(2x-1)x=0”是“x=0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 若(2x-1)x=0,则x=或x=0,即不一定是x=0;若x=0,则一定能推出(2x-1)x=0.故“(2x-1)x=0”是“x=0”的必要不充分条件. 6.一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数1213241516137则样本数据落在(10,40]上的频率为( )A.0.13 B.0.39 C.0.52 D.0.64解析:选C 由表知(10,40]上的频数为52,故样本数据在(10,40]上的频率为=0.52.7.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg属于偏胖,低于55 kg属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的纵坐标分别为0.05,0.04,0.02,0.01,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为( )A.1 000,0.50 B.800,0.50C.800,0.60 D.1 000,0.60解析:选D 第二小组的频率为0.40,所以该校高三年级的男生总数为=1 000(人);体重正常的频率为0.40+0.20=0.60.8.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则乙的平均成绩超过甲的平均成绩的概率为( )A. B. C. D.解析:选A 甲的平均成绩为:甲=(88+89+90+91+92)=90,∵乙的平均成绩超过甲的平均成绩,设数字被污损为x,∴83+83+87+(90+x)+99>450,解得x>8,∴x=9,∴乙的平均成绩超过甲的平均成绩的概率为.9.已知命题>0;命题.下列命题为真命题的是( )A. B. C. D. B ∵当x>0时,x+1>1,∴ln(x+1)>0,故命题p为真命题,当a=-1,b=-2时,a2<b2,故q为假命题,故p∧q为假命题.p∧q为真命题,p∧q为假命题,p∧q 为假命题. 10.为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:购买食品的年支出费用x/万元2.092.152.502.842.92购买水果和牛奶的年支出费用y/万元1.251.301.501.701.75根据上表可得回归直线方程=x+,其中=0.59,=-,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )A.1.795万元 B.2.555万元C.1.915万元 D.1.945万元解析:选A ==2.50(万元),==1.50(万元),其中=0.59,=-=0.025,=0.59x+0.025,故年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为=0.59×3.00+0.025=1.795万元.11.在如图所示的程序框图中,如果输入的n=5,那么输出的i等于( )A.3 B.4 C.5 D.6解析:选C 由框图知当n=5时,将3n+1=16赋给n,此时i=1;进入下一步有n=8,i=2;再进入下一步有n=4,i=3;以此类推有n=1,i=5,此时输出i=5.12.一正方形地砖的图案如图所示,其内部花形是以正方形边长的一半为直径作弧而得到的,若一只蚂蚁落在该地砖内,则它恰好在阴影部分的概率为( )A.-1 B.-C.- D.-解析:选C 如图,把原图形分割为相同的四部分,取其中一部分分析,设最小正方形的边长为1,则一个小阴影的面积为2=-1.则蚂蚁落在该地砖内,恰好在阴影部分的概率为=-.故选C. 二、填空题(本大题共4小题,每小题5分,共20分) 13.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.解析:丙组中应抽取的城市数为:8×=2.答案:214.从3男3女共6名同学中任取2名,这两名同学都是女同学的概率为________. [基本事件共为(男1男2),(男1男3),(男1女1),(男1女2),(男1女3),(男2男3),(男2女1),(男2女2),(男2女3),(男3女1),(男3女2),(男3女3),(女1女2),(女1女3),(女2女3),共15种,两名同学都是女同学的基本事件有3种,故所求概率为=.] 15.已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围为________.解析:因为p(1)是假命题,所以1+2-m≤0,解得m≥3;又p(2)是真命题,所以4+4-m>0,解得m<8.故实数m的取值范围是[3,8).答案:[3,8) 16.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A、B两点,则弦长|AB|≥2的概率为________.解析:显然直线l的斜率存在,设直线方程为y=k(x+1),代入(x-1)2+y2=3中得,(k2+1)x2+2(k2-1)x+k2-2=0,∵l与⊙C相交于A、B两点,∴Δ=4(k2-1)2-4(k2+1)(k2-2)>0,∴k2<3,∴-<k<,又当弦长|AB|≥2时,∵圆半径r=,∴圆心到直线的距离d≤,即≤,∴k2≤1,∴-1≤k≤1.由几何概型知,事件M:“直线l与圆C相交弦长|AB|≥2”的概率P(M)==.答案:三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解:记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=,P(A2)=,P(A3)=,P(A4)=.由题意知,事件A1,A2,A3,A4 彼此互斥.(1)取出1球为红球或黑球的概率为:P(A1∪A2)=P(A1)+P(A2)=+=.(2)取出1球为红球或黑球或白球的概率为:法一:P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=++=.法二:P(A1∪A2∪A3)=1-P(A4)=1-=.18.(本题满分12分)已知集合A={x|x2-3x+2=0},B={x|x2-mx+1=0},若A是B的必要不充分条件,求实数m的取值范围.解:化简条件得A={1,2},A是B的必要不充分条件,B A.集合B中的元素个数需分类讨论,B=∅,B={1}或{2}.当B=∅时,Δ=m2-4<0,∴-2<m<2;当B={1}或{2}时,或解得m=2;综上所述,m的取值范围为(-2,2]19.(12分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如图所示.(1)计算样本的平均成绩及方差;(2)在这10个样本中,现从不低于84分的成绩中随机抽取2个,求93分的成绩被抽中的概率.解:(1)这10名同学的成绩是:60,60,73,74,75,84,86,93,97,98,则平均数=80.方差s2=[(98-80)2+(97-80)2+(93-80)2+(86-80)2+(84-80)2+(75-80)2+(73-80)2+(74-80)2+(60-80)2+(60-80)2]=174.4.即样本的平均成绩是80分,方差是174.4.(2)设A表示随机事件“93分的成绩被抽中”,从不低于84分的成绩中随机抽取2个结果有:(98,84),(98,86),(98,93),(98,97),(97,84),(97,86),(97,93),(93,84),(93,86),(86,84),共10种.而事件A含有4个基本事件:(98,93),(97,93),(93,84),(93,86).所以所求概率为P==.20.(12分)某培训班共有n名学生,现将一次某学科考试成绩(单位:分)绘制成频率分布直方图,如图所示.其中落在[80,90)内的频数为36.(1)请根据图中所给数据,求出a及n的值;(2)从如图5组中按分层抽样的方法选取40名学生的成绩作为一个样本,求在第一组、第五组(从左到右)中分别抽取了几名学生的成绩;(3)在(2)抽取的样本中的第一与第五组中,随机抽取两名学生的成绩,求所取两名学生的平均分不低于70分的概率.解: (1)第四组的频率为:1-0.05-0.075-0.225-0.35=0.3,∴a==0.03,n==120.(2)第一组应抽:0.05×40=2(名),第五组应抽:0.075×40=3(名).(3)设第一组抽取的2个分数记作A1、A2,第五组的3个分数记作B1、B2、B3,那么从这两组中抽取2个的结果有:A1A2,A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,B1B2,B1B3,B2B3 共10种,其中平均分不低于70分的有9种,所求概率为:P=.21.(12分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:商店名称ABCDE销售额x/千万元35679利润额y/百万元23345 (1)画出散点图,观察散点图,说明两个变量有怎样的相关性;(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为4(千万元)时,估计利润额的大小.(注:=,=-)解:(1)散点图如下图,由散点图可知,两个变量符合正相关.(2)设回归直线方程是=x+,=×(2+3+3+4+5)=3.4,=×(3+5+6+7+9)=6,∴====0.5,=-=3.4-0.5×6=0.4.故利润额y对销售额x的回归直线方程为=0.5x+0.4.(3)当销售额为4(千万元)时,利润额为=0.5×4+0.4=2.4(百万元).22.(12分)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数和方差s2(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于32.5克的即为优质果实.若所取样本容量n=40,从该样本分布在[27.5,32.5)和[47.5,52.5]的果实中,随机抽取2个,求抽到的都是优质果实的概率.解:(1)组距d=5,由5×(0.020+0.040+0.075+a+0.015)=1,得a=0.050.(2)各组中点值和相应的频率依次为:中点值3035404550频率0.10.20.3750.250.075 所以=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.(3)由已知,果实重量在[27.5,32.5)和[47.5,52.5]内的分别有4个和3个,分别记为A1,A2,A3,A4和B1,B2,B3,从中任取2个的取法有:A1A2,A1A3,A1A4,A1B1,A1B2,A1B3,A2A3,A2A4,A2B1,A2B2,A2B3,A3A4,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,B1B2,B1B3,B2B3,共21种取法,其中都是优质果实的取法有B1B2,B1B3,B2B3,共3种取法,所以抽到的都是优质果实的概率P==.
相关试卷
这是一份黑龙江省哈尔滨市延寿县第二中学2021-2022学年高一上学期期中考试数学【试卷+答案】,共7页。
这是一份黑龙江省哈尔滨市延寿县第二中学2020-2021学年高一上学期期中考试数学试题 Word版含答案,共6页。
这是一份2021省哈尔滨延寿县二中高一11月月考数学试题含答案,共8页。