2021部分重点中学(郧阳中学、恩施高中、随州二中、沙中学)高二上学期联考数学试题含答案
展开
这是一份2021部分重点中学(郧阳中学、恩施高中、随州二中、沙中学)高二上学期联考数学试题含答案,共12页。
湖北省部分重点中学高二年级联合考试数学试题注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(共60分)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则( ) 2. 已知直线在轴上的截距是,在轴上的截距是,则直线的方程是( ) 3.若关于的不等式的解集为,则实数的值为( ) 4. 若向量,是夹角为的两个单位向量,则;的夹角为( ) 5.设圆的圆心为,且与直线相切,则圆的方程为( ) 6. 在中,点、分别是、边的中点,、分别与交于、两点,(),则( ) 7. 设为平面,,为两条不同的直线,则下列命题正确的是( ).A.若,,则 B.若,,则C.若,,则 D.若与相交,且//,则//8.已知圆上恰有三个点到直线的距离等于,则实数的取值是( ) A. , B., C., D.,9. 已知实数,,满足,且,则下列不等式中正确的是( )A. B. C. D.10.在长方体中,已知底面为正方形,为的中点,,,点为正方形所在平面内的一个动点,且满足.则线段的长度的最大值是 A.2 B.4 C.6 D.前三个答案都不对11. 过所在平面外一点,作,垂足为,连接,,,则下列结论错误的是( )A.若,,则点是的中点B.若,则点是的外心C.若,,,则点是的垂心D.若,,,则四面体外接球的表面积为12.已知满足,满足,则 前三个答案都不对 第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,共20分。13.已知,都是锐角,,,则 .14.在中,,,,则 .15.已知直线的倾斜角等于直线的倾斜角的一半,且经过点,则直线的方程为 .16.在中,,垂足为,且,则 .三、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知点,.(1)求直线的倾斜角;(2)在轴上求一点,使得以、、为顶点的三角形的面积为. 18.(12分)在中,角,,的对边分别是,,,且.(1)求的值;(2)记边的中点为,若,求中线的长度. 19.(12分)设,,函数,且已知函数在区间上的最大值为.(1)求实数的值;(2)求使得成立的的取值集合. 20.(12分)设直线,().(1)求证:直线恒过定点,并求出定点坐标;(2)若直线在两坐标轴上的截距相等,求直线的方程;(3)设直线与轴、轴的正半轴交于点,,求当(点为(1)中的定点)取得最小值时直线的方程. 21.(12分)如图,已知平面,,且,,,,为垂足.(1)试判断直线与的关系,并证明你的结论;(2)设直线与平面交于点,点,若二面角的大小为,且,求平面与平面所成的锐二面角的大小. 22.(12分)已知圆的圆心在直线上,与轴正半轴相切,且被直线:截得的弦长为.(1)求圆的方程;(2)设点在圆上运动,点,且点满足,记点的轨迹为.①求的方程,并说明是什么图形;②试探究:在直线上是否存在定点(异于原点),使得对于上任意一点,都有为一常数,若存在,求出所有满足条件的点的坐标,若不存在,说明理由.
湖北省部分重点中学高二年级联合考试数学试题参考答案一、选择题:1.C 2.A 3.B 4. C 5.C 6. D 7. C 8.A 9.C 10.C 11.D 12.B二、填空题:13. 14.或 15. 16.或三、解答题:17.解:(1)由斜率公式得:,又则直线的倾斜角为;………………………………………………4分 (2)由题设条件可知,直线的方程为:, 设点,到直线的距离为,则 则 ……………………………8分 则M的坐标为 ………………………………………10分另外,也可过点作轴的垂线,构造梯形,利用梯形面积减去2个直角三角形面积可得相应方程,可参考给分。 18.解:(1)由题设条件可得:,即即: ……………………………5分(2)设,则在中,由余弦定理得,,即;①在中,由余弦定理得,,即;②又,① +②得,,故,所以.因此,中线的长度.……………………………12分 19.解:(1),.………………6分(2)令,解得.………………12分 20.(1). ………………3分(2)当直线过原点时,当直线不过原点时,,则综上,直线方程为…………7分(3)当且仅当时等号成立,此时. …………12分 21.(1)∵,,又 ∵即直线与是垂直关系.…………………………………………5分(2)连接,,则∵,四点共圆∵,又, ,∵, ,∵,即平面与平面所成的锐二面角的大小为.……………………………12分 22.(1)设圆心,则由圆与x轴正半轴相切,可得半径.
∵圆心到直线的距离d==,由7+2=,解得.
故圆心为或,半径等于.∵圆与轴正半轴相切 圆心只能为故圆的方程为.………………………………4分(2)①设,则:=(,),=(7-,6-) ∵点A在圆上运动 即: 所以点的轨迹方程为,它是一个以………………………………8分② 假设存在一点满足条件,设则: 整理化简得:=∵在轨迹上 化简得:=0解得:存在(,)满足题目条件.………………………………………12分注:以上各解答仅供参考,其他解法根据具体情况相应给分。
相关试卷
这是一份2023郧阳中学、恩施高中、随州二中、襄阳三中、沙中学高二下学期4月联考数学试题PDF版含答案,文件包含湖北省郧阳中学恩施高中随州二中襄阳三中沙市中学2022-2023学年高二下学期4月联考数学试题答案pdf、湖北省郧阳中学恩施高中随州二中襄阳三中沙市中学2022-2023学年高二下学期4月联考数学试题PDF版无答案pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份2023郧阳中学、恩施高中、随州二中、襄阳三中、沙中学高二下学期4月联考数学试题含答案,文件包含湖北省郧阳中学恩施高中随州二中襄阳三中沙市中学2022-2023学年高二下学期4月联考数学试题无答案docx、湖北省郧阳中学恩施高中随州二中襄阳三中沙市中学2022-2023学年高二下学期4月联考数学试题答案pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份2022-2023学年湖北省郧阳中学、恩施高中、沙市中学、随州二中、襄阳三中高二上学期10月联考数学试题(解析版),共18页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。