|试卷下载
终身会员
搜索
    上传资料 赚现金
    2020青岛胶州高二下学期期末考试数学试题含答案
    立即下载
    加入资料篮
    2020青岛胶州高二下学期期末考试数学试题含答案01
    2020青岛胶州高二下学期期末考试数学试题含答案02
    2020青岛胶州高二下学期期末考试数学试题含答案03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020青岛胶州高二下学期期末考试数学试题含答案

    展开
    这是一份2020青岛胶州高二下学期期末考试数学试题含答案,共11页。试卷主要包含了作答选择题时,若,使得成立,则实数的最大值为,已知,则的值为,设全集,集合,集合,则等内容,欢迎下载使用。

    2019-2020学年度第二学期期末学业水平检测

    高二数学

    本试卷4页,22满分150考试用时120分钟

     

    注意事项:

    1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;

    2.作答选择题时:选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;

    3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.

     

    一、单项选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 

     

    1”是“”成立的   

     A充分非必要条件   B必要非充分条件 

     C充要条件  D既非充分也非必要条件

    2函数的零点所在区间为   

     A  B            C  D

    3已知数列的前项和为,则   

     A  B  C  D

    4,使得成立,则实数的最大值为   

     A B C D

    5已知,则的值为   

     A B  C D

    6已知函数的部分图象如图所示,则的解析式可能为   

    A 

     B

     C

     D 

    7为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(分制)的频数分布表如下:

    得分

    频数

    设得分的中位数,众数,平均数,下列关系正确的是   

     A B C D

    8已知函数的定义域为,且是偶函数,是奇函数,调递增,则   

    A B

    C D

     

    二、多项选择题:本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。

     

    9设全集,集合,集合,则   

     A  B

     C D

    10已知复数满足为虚数单位,复数的共轭复数为,则   

    A  B

    C.复数的实部为 D.复数对应复平面上的点在第二象限

    11若函数,则下述正确的是   

     A单调递增 B的值域为

     C的图象关于直线对称  D的图象关于点对称

    12,则   

     A  B

     C      D

     

    三、填空题:本大题共4个小题,每小题5分,共20分。

     

    13已知直线与函数的图象相切,则           

    14已知数列的前项和为,则           

    15是函数的极值点,则的极小值为           

    16一袋中装有个大小相同的黑球和白球.已知从袋中任意摸出个球,至少得到个白球的概率是,则袋中白球的个数为            ;从袋中任意摸出个球,则摸到白球的个数的数学期望为            (本题第一个空分,第二个空分)

     

    四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。

     

    17.(10分)

    三个条件中任选两个,补充到下面问题中,并解答.

    已知等差数列的前项和为,满足:                   

    1)求的最小值;

    2数列的前项和证明:

     

    18.(12分)

    某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:

     

    射门距离不超过

    射门距离超过

    总计

    射门成功

    射门失败

    总计

     

     

     

     

     

     

     

    1请问是否有的把握认为该球员射门成功与射门距离是否超过米有关?

    参考公式及数据:

     

    2)当该球员距离球门射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为,其射门成功率为,求该球员射门成功率最高时射门角的值.

     

     

    19.(12分)

    已知数列的前项和为

    1)证明:数列为等比数列;

    2)若数列满足:,证明:

     

    20.(12分)

    已知函数为自然对数的底数.

    1)若,求的零点

    2)讨论的单调性;

    3)当,求实数的取值范围

     

    21.(12分)

    探索浩瀚宇宙是全人类的共同梦想,我国广大科技工作者、航天工作者为推动世界航天事业发展付出了艰辛的努力,为人类和平利用太空、推动构建人类命运共同体贡献了中国智慧、中国方案、中国力量

    1)某公司试生产一航空零件在生产过程中,当每小时次品数超过件时,产品的次品率会大幅度增加,为检测公司的生产能力,同时尽可能控制不合格品总量,抽取几组一小时生产的产品数据进行次品情况检查分析,已知(单位:百件)件产品中,得到次品数量(单位:件)的情况汇总如下表所示(单位:件)(单位:百件)线性相关

    (百件)

    (件)

    根据公司规定,在一小时内不允许次品数超过请通过计算分析,按照公司的现有生产技术设备情况,判断可否安排一小时生产件的任务?

    2“战神”太空空间站工作人员需走出太空站外完成某项试验任务,每次只派一个人出去,且

    每个人只派出一次,工作时间不超过分钟,如果有人分钟内不能完成任务则撤回,再派下一个人.现在一共有个人可派,工作人员各自在分钟内能完成任务的概率分别依次为各人能否完成任务相互独立,派出工作人员顺序随机,记派出工作人员的人数为的数学期望为,证明:

    参考公式:用最小二乘法求线性回归方程的系数公式

    ;

    参考数据:

     

    22.(12分)

    已知函数为自然对数的底数.

    1)若,证明:

    2)讨论的极值点个数


    2019-2020学年度第二学期期末学业水平检测高二数学参考答案

    一、单项选择题:本大题共8小题,每小题5分,共40分。 

    1-8:  A B A C  D B D B 

    二、多项选择题:本大题共4小题,每小题5分,共20分。

    9AB    10BD    11AD    12ACD

    三、填空题:本大题共4个小题,每小题5分,共20分。

    13.            14.            15.           16.  1;(2

    四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。

    17.10分)

    解:1)若选择②③;

    由题知:····························································1

    又因为所以··························································2

    所以·······························································3

    所以·······························································.4

    所以·····························································5

    所以·······························································6

    若选择①②;

    由题知:····························································1

    又因为所以··························································2

    所以·······························································3

    所以·······························································.4

    所以·····························································5

    所以·······························································6

    若选择①③;

    由题知:,所以······················································1

    由题知:,所以······················································2

    所以·····························································4

    所以·····························································5

    所以.·······························································6

    2)因为,所以······················································8

    所以.······························································10

     

    18.12分)

    解:1)由题知:····················································3

    所以有的把握认为该球员射门成功与射门距离是否超过米有关····················4

    2)由题知:·······················································7

    因为,得····························································8

    所以当时,;当时,···················································9

    所以上单调递增;在上单调递减········································10

    所以,即球员射门成功率最高时射门角····································12

     

    19.12分)

    : 1)由题知:·····················································1

    两式相减得··························································2

    所以·····························································4

    又因为,所以························································5

    因为

    所以数列是首项为,公比为的等比数列·····································6

    2由(1)知:,得·················································7

    所以·······························································8

    所以····························································10

    所以······························································12

     

    20.12分)

    解:1,则····················································1

    因为时,;当时,

    所以上单调递增;···················································2

    又因为,所以的零点为·················································3

    2由题意知,因为··················································4

    ,由得:

    时,上单调递减;

    时,上单调递增;··············································5

    ,由得:,且

    时,上单调递增;

    时,上单调递减;

    时,上单调递增;··············································6

    ,由(1)知:上单调递增·········································7

    ,由得:,且

    时,上单调递增;

    时,上单调递减;

    时,上单调递增;··············································8

    综上,当时,上单调递减上单调递增

          时,上单调递增;在上单调递减

          时,上单调递增

          时,上单调递增;在上单调递减

    3由(2)知

    不满足题意

    不满足题意

    不满足题意

    所以·······························································9

    上单调递增;在上单调递减;

    上单调递增;

    所以恒成立

    所以·······························································10

    上单调递增;在上单调递减;

    所以所以··························································11

    综上知:···························································12

     

    21.12分)

    解:1由已知可得:

    ·································································2

    又因为

    由回归直线的系数公式知:

    ···································································3

    ···································································4

    所以

    (百件)时,,符合有关要求

    所以按照公司的现有生产技术设备情况,可以安排一小时生产件的任务. ··········5

    2)由题意知:

    ·······························································7

    ···································································8

    所以·······························································9

    两式相减得 ························································10

    ··················································11

    ································································12

    22.12分)

    :1)法一:

    ,则····························································1

    ,则

    时,上单调递减;

    时,上单调递增;···············································2

    因此,即;也有······················································3

    所以当时,··························································4

    所以上单调递增;···················································5

    又因为

    所以,时,;当时,

    所以·······························································6

    法二:

    ,则····························································1

    ,则

    所以上单调递增·····················································3

    又因为

    所以时,上单调递减;

    时,上单调递增;

    因此,即恒成立

    所以上单调递增·····················································5

    又因为

    所以,时,;当时,

    所以·······························································6

    2)由题意知

    ,则

    所以上单调递增无极值点;··········································7

    ,且上单调递增

    故存在满足

    因此·······························································8

    时,所以上单调递减;

    时,所以上单调递增;

    所以·······························································9

    再令

    所以上单调递减且,即···············································10

    因为,又知

    所以

    所以存在满足······················································11

    所以当时,上单调递增;

    时,上单调递减;

    时,上单调递增;

    所以, 存在两个极值点

    综上可知:当不存在极值点;

    存在两个极值········································12

     

     

    相关试卷

    2021青岛胶州高一下学期期末考试数学试题PDF版含答案: 这是一份2021青岛胶州高一下学期期末考试数学试题PDF版含答案,文件包含山东省青岛胶州市2020-2021学年高一下学期期末考试数学试题PDF版pdf、202107高一数学答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    2021青岛胶州高二下学期期末考试数学试题PDF版含答案: 这是一份2021青岛胶州高二下学期期末考试数学试题PDF版含答案,文件包含202107高二数学答案pdf、山东省青岛胶州市2020-2021学年高二下学期期末考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    2021青岛胶州高二下学期期末考试数学试题PDF版含答案: 这是一份2021青岛胶州高二下学期期末考试数学试题PDF版含答案,文件包含202107高二数学答案pdf、山东省青岛胶州市2020-2021学年高二下学期期末考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map