![【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(原卷版)第1页](http://img-preview.51jiaoxi.com/2/3/13628544/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(原卷版)第2页](http://img-preview.51jiaoxi.com/2/3/13628544/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(原卷版)第3页](http://img-preview.51jiaoxi.com/2/3/13628544/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(解析版)第1页](http://img-preview.51jiaoxi.com/2/3/13628544/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(解析版)第2页](http://img-preview.51jiaoxi.com/2/3/13628544/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(解析版)第3页](http://img-preview.51jiaoxi.com/2/3/13628544/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版数学七年级上册双减分层作业练习
【培优分级练】人教版数学七年级上册 1.2.4《绝对值》培优三阶练(含解析)
展开
1.2.4 绝对值
知识清单
1.绝对值
1)绝对值的概念:一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作.
2)绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.
3)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是.
即:(1)如果,那么;(2)如果,那么;(3)如果,那么.
可整理为:,或,或
4)绝对值具有非负性,取绝对值的结果总是正数或.即:
2.有理数的比较大小
1)两个负数,绝对值大的反而小.
2)正数大于零,零大于负数,正数大于负数.
3)利用数轴:在数轴上,右边的点所对应的数总比左边的点所对应的数大.
3.归纳: ①绝对值等于它本身的数是: 非负数 ;②绝对值大于它本身的数是: 负数 ;
③绝对值等于它的相反数的数是: 非正数 ;④绝对值最小的有理数是: 0 ;
⑤绝对值最小的正整数是: 1 ;⑥绝对值最小的负整数是: -1 .
课后培优练级练
培优第一阶——基础过关练
1.(2022·辽宁沈阳·七年级期末)的绝对值为( )
A.2022 B.2022或 C. D.
【答案】A
【分析】数轴上表示数a的点与原点的距离是数a的绝对值,根据定义直接求解即可.
【详解】解:-2022的绝对值是2022,故A正确.故选:A.
【点睛】本题考查绝对值的含义,掌握“利用绝对值的含义求解一个数的绝对值”是解本题的关键.
2.(2021•郯城县期中)下列说法错误的个数是( )
①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;
③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.
A.3个 B.2个 C.1个 D.0个
【分析】①一个数的绝对值的相反数一定是负数.反例:当这个数是0时,结果还是0不是负数,所以错误;②只有负数的绝对值是它的相反数.反例:当这个数是0时,结果还是0也是0的相反数,所以错误;③正数和零的绝对值都等于它本身.由绝对值性质可知,正确;④互为相反数的两个数的绝对值相等.正确.所以错误的有2个.
【解答】解:根据绝对值的性质和相反数的概念,得①,②错误;③,④正确.故选:B.
【点评】主要考查了绝对值,相反数的性质和定义.本题中要特别注意一些特殊的数字,如0,有时该数是最后的反例.
3.(2022·河南周口·七年级期末)下列四个有理数中,最小的数是( )
A. B.-0.2 C.-20 D.0
【答案】C
【分析】根据有理数大小比较法则解答.
【详解】解:∵,,,
∵正数>零>负数,且,∴.∴最小的数是.故选:C.
【点睛】此题考查了有理数大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小.
4.(2022·全国初一课时练习)小麦做这样一道题“计算”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )
A.5 B.-5 C.11 D.-5或11
【答案】D
【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.
【解析】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选D.
【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
5.(2022·山东济宁·七年级期末)设x为一个有理数,若,则x必定是( )
A.负数 B.正数 C.非负数 D.零
【答案】C
【分析】根据绝对值的性质即可得答案.
【详解】解:∵,∴,∴x必定是非负数.故选:C.
【点睛】本题主要考查绝对值的性质,需要熟练掌握并灵活运用.
6.(2022·重庆初三模拟)下列命题正确的是( )
A.绝对值等于本身的数是正数 B.绝对值等于相反数的数是负数
C.互为相反数的两个数的绝对值相等 D.绝对值相等的两个数互为相反数
【答案】C
【分析】根据绝对值和相反数的概念分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【解析】A、绝对值等于本身的数是非负数,原命题是假命题;
B、绝对值等于相反数的数是非正数,原命题是假命题;
C、互为相反数的两个数的绝对值相等,是真命题;
D、绝对值相等的两个数相等或互为相反数,原命题是假命题;故选:C.
【点睛】此题借助绝对值和相反数的概念考查了命题与定理,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
7.(2022·天津滨海新·七年级期末)在,,,四个数中,是正数的有( )
A.0个 B.1个 C.2个 D.3个
【答案】C
【分析】根据绝对值的意义,多重符号的化简,计算判断即可;
【详解】解:-15是负数;0不是正数也不是负数;|-9|=9是正数;-(-6)=6是正数;
∴正数有两个,故选: C.
【点睛】本题考查了正负数的判断:需将符号化为最简,即数字前最多只有一个符号时,看是否有负号“-” ,如果有“-”就是负数,否则是正数;绝对值(数轴上表示数a的点与原点的距离,记作│a│;正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数);多重符号的化简:若一个数前有多重符号,则看该数前面的符号中,符号“-”的个数来决定,奇数个符号则该数为负数,偶数个符号则该数为正数;掌握相关概念是解题关键.
8.(2022·内蒙古赤峰·七年级期中)、、是有理数且,则的值是( )
A. B.3或 C.1 D.或1
【答案】D
【分析】根据,则这三个数中一定有一个或三个数为负数两种情况进行讨论,得出结果即可.
【详解】∵,∴x、y、z这三个数中有一个或三个数为负数,
当这三个数中有一个负数时,假设,,,
则;
当这三个数中有三个负数时,假设,,,
则;故D正确.故选:D.
【点睛】本题主要考查了绝对值的意义,正确进行分类讨论是解题的关键.
9.(2022·山东潍坊·七年级期末)有理数a,b在数轴上的位置如图所示,则下列结论一定正确的是( )
A. B. C. D.
【答案】A
【分析】根据a、b在数轴上的位置和它们与原点的距离可得答案.
【详解】解:由数轴可得b<a,
∴-a<-b,故选项A符合题意,选项B不符合题意;
∵原点的位置不固定,∴|a|和|b|大小不一定,故选项C、选项D不符合题意.故选:A.
【点睛】本题考查有理数的大小比较,掌握数轴上的数右边的总比左边的大是解题关键.
10.(2022·浙江初一课时练习)若|x+1|+|y-2|=0,则x-y=________.
【答案】-3
【解析】由|x+1|+|y﹣2|=0,得
x+1=0,y﹣2=0,解得x=﹣1,y=2.
x﹣y=﹣1﹣2=﹣1+(﹣2)=﹣3,故答案为﹣3.
点睛:本题利用非负数的和为零得出每个非负数同时为零是解题关键.
11.(2022·山东济宁·七年级期末)大家知道,,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子在数轴上的意义是______.
【答案】表示a的点与表示-5的点之间的距离
【分析】利用绝对值的意义即可求解.
【详解】解:因为,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离,式子,它在数轴上的意义是:表示6的点与表示3的点之间的距离,
所以式子在数轴上的意义是表示a的点与表示-5的点之间的距离.
【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.
12.(2021·华中师范大学附属惠阳学校七年级月考)化简:________.
【答案】1
【分析】根据绝对值的定义即可得出答案,去掉绝对值再计算.
【详解】解:|π-3|+|4-π|=π-3+4-π=1,故答案为:1.
【点睛】本题主要考查了绝对值的定义,解题的关键是熟记求绝对值的法则.
13. (2021·安徽合肥市·七年级期末)代数式的最小值等于__________.
【答案】2
【分析】根据绝对值的非负性即可得出结论
【详解】解:∵ ;2∴的最小值为2
【点睛】此题考查了绝对值的非负性和绝对值的意义,熟练掌握绝对值的性质是解本题的关键.
14.(2022·湖南益阳·七年级期末)比较下列各数的大小,并用“<”号连接起来:
,,3,,,0.
【答案】
【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.
【详解】解:,,
∵ ,
∴.
【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.
15.(2022•澧县校级期中)若﹣1<x<4,化简|x+1|+|4﹣x|.
【分析】利用绝对值的非负性解答即可.
【解答】解:∵﹣1<x<4,∴|x+1|+|4﹣x|=1+x+4﹣x=5.
【点评】本题考查了整式的混合运算的应用,利用绝对值的非负性去掉绝对值符号是解此题的关键.
16.(2022·河南·商丘市第十六中学七年级期末)创建文明城期间,一天上午,志愿者小明从柒悦城出发,乘坐3路公交车,始终在该线路的公交站点做志愿者服务,3路车为神火大道上南北方向直线上的公交线路,小明坐车范围北起火车站,南至香君路口,途中共设12个上下车站点,如图所示:
下午,小明到A站下车时,本次志愿者服务活动结束,如果规定向南为正,向北为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,-2,+6,-11,+8,+1,-3,-2,-4,+7;
(1)请通过计算说明A站是哪一站?
(2)若相邻两站之间的平均距离为0.8千米,求这次小明志愿服务期间乘坐公交车行进的总路程是多少千米?
【答案】(1)长江路口
(2)39.2千米
【分析】(1)求出这些数的和,根据和的符号和绝对值即可判断A站的位置;
(2)计算所有站数绝对值的和,再乘以相邻两站之间的平均距离即可.
(1)解:由题意得,
.
柒悦城向南第5站为长江路口,
A站是长江路口.
(2)解:由题意得,
(千米)
故这次小明志愿服务期间乘坐公交车行进的总路程是39.2千米.
【点睛】本题考查正负数和绝对值的实际应用,读懂题意,理解题中正负号代表的意义是解题的关键.
培优第二阶——拓展培优练
1.(2022·山东临沂·七年级期末)已知,,,那么下列关系正确的是( )
A. B. C. D.
【答案】A
【分析】由,,,可得,,,据此判定即可得到答案.
【详解】解:∵,,,
∴,,,∴.故选:A.
【点睛】本题考查了有理数的大小比较法则:正数>0>负数;两个负数比较大小,绝对值大的反而小.掌握有理数大小比较的法则是关键.
2.(2021·广西南宁市·七年级期中)若,则a的范围( )
A. B. C. D.
【答案】A
【分析】利用绝对值的意义得到,然后解不等式即可.
【详解】解:∵,∴,∴.故选:A.
【点睛】本题考查了绝对值的化简,熟练掌握绝对值分类化简的标准是解题的关键.
3.(2021·浙江七年级期中)若不等式,对一切实数x都成立,则a的取值范围是( )
A. B. C. D.
【答案】B
【分析】先得出代数式的意义,从而得出结论.
【详解】解:由数轴知,表示x到4,2,1,0这四个点的距离之和.
当1≤x≤2时,距离之和最小,此时=5,
即不等式≥5对一切数x都成立,∴a≤5,故选B.
【点睛】本题考查绝对值的意义,解题的关键是学会利用数形结合的思想解决问题.
4.(2022·河南南阳·七年级期末)已知a、b所表示的数如图所示,下列结论正确的有( )个
①>0;②<;③<;④;⑤>
A.1 B.2 C.3 D.4
【答案】C
【分析】根据数轴和绝对值的定义以及有理数的大小比较的方法分别对每一项进行分析即可.
【详解】解:如图所示:b<-2<a<-1<0<1,|b|>|a|,
∴结论①错误;结论②正确;结论③错误;
∵a+1<0∴|a+1|=-a-1,结论④正确;
|2+b|表示b与-2之间的距离,|-2-a|表示a与-2的距离,结合图意可得
∴|2+b|>|-2-a|,故结论⑤正确.故选:C.
【点睛】此题主要考查了有理数的比较大小,以及数轴和绝对值的性质,解题的关键是正确去掉绝对值.
5.(2022·河南焦作·七年级期末)定义运算a★b=,如1★3=||=2.若a=2,且a★b=3,则b的值为( ).
A.7 B.1 C.1或7 D.3或-3
【答案】C
【分析】根据新定义的运算,将a的值代入,再做绝对值运算即可.
【详解】由新定义的运算得:
再将代入得:,即
由绝对值的定义得:或解得:或 故选:C.
【点睛】本题考查了绝对值运算,理解新定义的运算是解题关键.
6.(2022·江苏南京·七年级期末)若有理数a、b满足等式│b-a│-│a+b│=2b,则有理数数a、b在数轴上的位置可能是( )
A. B.
C. D.
【答案】D
【分析】根据数值上表示的数和绝对值的意义逐一判断分析各项即可.
【详解】解:A.∵a0, 0,b>0, 0,b>0, >,∴,
∴本选项不符合题意;
D. ∵a0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
【答案】(1)-1、1、6;(2)-10 ;(3)存在,y=2.5或y=-2.5;(4)值不变,BC-AB=3.
【分析】(1)据最小正整数的意义和非负数的性质作答;(2)先去绝对值号,再去括号,最后合并即可;
(3)据绝对值的性质用y表示出点M到点A,点B的距离之和,再令其等于5,列方程求解;
(4)结合题意,用t和n表示出BC-AB再化简即可判断.
【详解】解:(1)由b是最小正整数得b=1;
由(c-6)2+|a+b|=0得c-6=0和a+b=0,解之得c=6,a=-1.故a=-1,b=1,c=6.
(2)∵点P在A、B之间运动 ∴-1<x<1∴x+1>0、x-1<0、x+5>0
∴|x+1|-|x-1|-2|x+5|=(x+1)-(1-x)-2(x+5)=x+1-1+x-2x-10=-10.
(3)由题意知AB=2,所以M不可能在AB之间,下面讨论M在AB之外的情况
第一种情况,当M在A点左侧时 由MA+MB=MA+MA+AB=5,得MA=1.5
∴|y-(-1)|=1.5且y<-1∴y=-2.5;
第二种情况,当M在B点右侧时 由MA+MB=MA+MA-AB=5,得MA=3.5
∴|y-(-1)|=3.5且y>-1 ∴y=2.5;故存在这样的点M,对应的y=2.5或y=-2.5.
(4)如下图
用A1、B1、C1分别表示A、B、C的初始位置
由题意得,当t秒时,A1A=nt,B1B=2nt,C1C=5nt
∴AB=A1A+A1B1+B1B=nt+2+2nt=3nt+2,BC=B1C-B1B=B1C1+C1C-B1B=5+5nt-2nt=3nt+5
∴BC-AB=(3nt+5)-( 3nt+2)=3 故BC-AB的值不变,且BC-AB的值为3.
【点睛】此题综合考查了绝对值的意义和数轴上两点之间的距离.弄清数轴上点及点的运动与所表示的数之间的关系是解决本题的关键.
培优第三阶——中考沙场点兵
1.(2022·湖南郴州·中考真题)有理数,,0,中,绝对值最大的数是( )
A. B. C.0 D.
【答案】A
【分析】根据绝对值的含义求出各个数的绝对值,再比较大小即可.
【详解】,,0的绝对值为0,,
∵,
∴绝对值最大的数为-2,故选:A.
【点睛】本题考查了绝对值的含义以及有理数的大小比较等知识,掌握绝对值的含义是解答本题的关键.
2.(2022·广西·中考真题)﹣2023的绝对值等于( )
A.﹣2023 B.2023 C.土2023 D.2022
【答案】B
【分析】利用绝对值的代数意义,正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,据此直接计算即可.
【详解】解:根据绝对值的定义可得 ;故选:B
【点睛】本题考查绝对值的代数意义,掌握绝对值的意义是解题的关键.
3.(2022·台湾·模拟预测)如图数线上的、、、四点所表示的数分别为、、、,且为原点.根据图中各点的位置判断,下列何者的值最小?( )
A. B. C. D.
【答案】A
【分析】根据绝对值意义直接求解即可.
【详解】解:表示的点到原点的距离最近,
最小,故选:.
【点睛】本题考查了绝对值,数轴,掌握绝对值的定义:数轴上一个数表示的点到原点的距离是这个数的绝对值是解题的关键.
4.(2022·河北唐山·二模)在数轴上与原点的距离大于8的点对应的x满足( )
A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>8
【答案】B
【分析】根据绝对值的几何意义,求出x满足的条件即可.
【详解】解:∵数轴上的x表示与原点的距离大于8的点,
∴x可以是小于-8的数,也可以是大于8的数,
即x<﹣8或x>8,故选:B.
【点睛】本题考查绝对值的几何意义,了解绝对值的几何意义是解答本题的关键.
5.(2022·河北·模拟预测)已知a,b为实数,若,则下列判断正确的是( )
A.a>0,b>0 B.a<0,b>0 C.a>0,b<0 D.a<0,b<0
【答案】C
【分析】根据绝对值的意义求解即可.
【详解】解:∵∴∴a>0,b<0,故选C.
【点睛】本题主要考查了绝对值,熟练掌握绝对值的性质是解答本题的关键.
6.(2021·重庆中考模拟)下列判断正确的是( )
A.若|a|=|b|,则a=b B.若|a|=|b|,则a= -b C.若a=b,则|a|=|b| D.若a=-b,则|a|= -|b|
【答案】C
【解析】试题分析:根据绝对值的性质即可进行判断.
解:若|a|=|b|,则a=±b,选项A、B错误; 若a=b,则|a|=|b|,选项C正确;
D. 若a=-b,则|a|=|b|,选项D错误. 故选C.
7.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )
A. B.若取最小值,则
C.若,则 D.若,则
【答案】D
【分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.
【详解】解:A.当时,,故该项错误;
B.∵,∴当时取最小值,故该项错误;
C.∵,∴,,∴,故该项错误;
D.∵且,∴,∴,故该项正确;故选:D.
【点睛】本题考查绝对值,掌握绝对值的定义和绝对值的非负性是解题的关键.
9.(2022·贵州黔东南·中考真题)在解决数学实际问题时,常常用到数形结合思想,比如:的几何意义是数轴上表示数的点与表示数的点的距离,的几何意义是数轴上表示数的点与表示数2的点的距离.当取得最小值时,的取值范围是( )
A. B.或 C. D.
【答案】C
【分析】由题意画出数轴,然后根据数轴上的两点距离可进行求解.
【详解】解:如图,由可得:点、、分别表示数、2、,.
的几何意义是线段与的长度之和,
当点在线段上时,,当点在点的左侧或点的右侧时,.
取得最小值时,的取值范围是;故选C.
【点睛】本题主要考查数轴上的两点距离,解题的关键是利用数形结合思想进行求解.
10.(2021·呼和浩特市初三二模),则一定是( )
A.负数 B.正数 C.零或负数 D.非负数
【答案】C
【分析】根据绝对值的定义,绝对值等于它的相反数的数是零或负数.
【解析】解:∵,∴a一定是零或负数,a一定是零或负数.故选:C.
【点睛】本题主要考查了绝对值的定义,属于基础题型.注意不要忽略零.
11.(2021·浙江杭州市·七年级期末)表示,两数中的最小者,表示,两数中的较大者,如,,则是( )
A. B. C. D.
【答案】A
【分析】根据“表示,两数中的最小者,表示,两数中的较大者”,先确定和,得到,再根据法则即可解答.
【详解】解:∵, ∴=,,
∴,故选:A.
【点睛】本题主要考查了新定义中的有理数的大小比较,解题的关键是理解题中给出的运算法则.
12.(2021·山东青岛·二模)【问题提出】的最小值是多少?
【阅读理解】为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离.那么可以看做这个数在数轴上对应的点到1的距离.就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值.
我们先看表示的点可能的3种情况,如图所示:
(1)如图①,在1的左边,从图中很明显可以看出a到1和2的距离之和大于1.
(2)如图②,在1和2之间(包括在1,2上),可以看出到1和2的距离之和等于1.
(3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.
所以到1和2的距离之和最小值是1.
【问题解决】(1)的几何意义是______.请你结合数轴探究:的最小值是______.
(2)请你结合图④探究:的最小值是______,此时a为______.
(3)的最小值为______.
(4)的最小值为______.
【拓展应用】如图⑤,已知到-1,2的距离之和小于4,请写出的范围为______.
【答案】(1)这个数在数轴上对应的点到3和6两个点的距离之和,3;(2)2,2;(3)9;(4)1021110;拓展应用:
【分析】(1)通过绝对值的几何意义进行解题即可;(2)根据绝对值的几何意义,当a取中间数2时,有最小值;(3)根据绝对值的几何意义,当a在3和4之间时(包括在3和4上时),有最小值;(4)根据绝对值的几何意义,当a取中间数时,原式有最小值,再通过求和公式进行求和即可得解;拓展应用:根据绝对值的几何意义,由题意分别找出a的临界值,从而即可求得a的取值范围.
【详解】(1)∵表示这个数在数轴上对应的点到3的距离,表示这个数在数轴上对应的点到6的距离,∴的几何意义是这个数在数轴上对应的点到3和6两个点的距离之和;
根据题意,当a在3和6之间时(包括在3和6上时),a到3和6的距离之和最小,最小距离为,则的最小值是3,
故答案为:这个数在数轴上对应的点到3和6两个点的距离之和;3;
(2)的几何意义是这个数在数轴上对应的点到1、2和3三个点的距离之和,
∵在数轴上,2在1和3之间,
∴当a取中间数时,的值最小,
如下图所示,当时,的最小值为,
故答案为:2;2;
(3)的几何意义是这个数在数轴上对应的点到1、2、3、4、5、6六个点的距离之和,∴当a取中间数时,原式有最小值,
∴当a在3和4之间时(包括在3和4上时),a到六个数的距离之和最小,
∴的最小值为,故答案为:9;
(4)的几何意义是这个数在数轴上对应的点到1、2、3、4、5、6…2021这2021个点的距离之和,
∴当a取中间数时,原式有最小值,
∴的最小值为:
,故答案为:1021110;
拓展应用:当a在和2之间时,a到两点的距离之和为,
当或时,a到两点的距离之和为或,
根据题意,到-1,2的距离之和小于4,则的范围为,
故答案为:.
【点睛】本题主要考查了绝对值的几何意义,熟练掌握借助数轴解题的方法,由数形结合进行解题是解决本题的关键.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)