|试卷下载
搜索
    上传资料 赚现金
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(原卷版).docx
    • 解析
      【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(解析版).docx
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)01
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)02
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)03
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)01
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)02
    【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册22.2二次函数与一元二次方程精练

    展开
    这是一份初中数学人教版九年级上册22.2二次函数与一元二次方程精练

    22.2二次函数与一元二次方程课后培优练级练培优第一阶——基础过关练一、单选题1.已知抛物线与x轴的一个交点是,另一个交点是B,则AB的长为(         )A.2 B.3 C.4 D.6【答案】D【详解】抛物线与x轴的一个交点是,,即,抛物线为:,令,求出,,.故选:D.2.二次函数的图象与x轴交点的情况是(        )A.没有交点 B.有一个交点 C.有两个交点 D.与m的值有关【答案】C【详解】解:令得一元二次方程,∵,∴二次函数的图象与x轴有两个不同的交点,故选:C.3.若二次函数y=-x2+b的图像经过点(0,4),则不等式-x2+b≥0的解集为(        )A.-2≤x≤2 B.x≤2 C.x≥-2 D.x≤-2或x≥2【答案】A【详解】解:将(0,4)代入y=-x2+b中得b=4,∴y=-x2+4设y=-x2+4与x轴交于A,B两点,令y=0,即-x2+4=0,解得∴A(2,0)B(-2,0)图像如下:由图像可得:当-x2+4≥0时的解集为:-2≤x≤2,故选:A.4.已知二次函数的图像经过与两点,关于的方程()有两个整数根,其中一个根是,则另一个根是(   )A. B. C. D.【答案】A【详解】解:二次函数的图像经过与两点,∵当时,的两个根为和∴函数的对称轴是直线,又∵关于的方程()有两个根,其中一个根是3,∴方程()的另一个根为.故选:A.5.观察下列表格,估计一元二次方程的正数解在(        )A.-1和0之间 B.0和1之间 C.1和2之间 D.2和3之间【答案】C【详解】解:令x2+3x-5,当时,,当时,,x2+3x-5=0的一个正数x的取值范围为1<x<2,故选C.6.已知的图象如图所示,对称轴为直线,若是一元二次方程的两个根,且,则下列说法正确的是(       )A. B. C. D.【答案】D【详解】解:抛物线开口向下,则,对称轴为,即则,故A错误,对称轴为,,故B错误,,,,解得,故C不正确,D正确,故选D二、填空题7.如图,抛物线与直线的两个交点坐标分别为A(﹣3,6),,则方程的解是______.【答案】,【详解】解:由图象可知,关于x的方程的解,就是抛物线(a≠0)与直线(b≠0)的两个交点坐标分别为A(﹣3,6),B(1,3)的横坐标,即,.故答案为:,.8.若函数的图象与关于的函数的图象有交点,则的取值范围是_________.【答案】##【详解】联立两个函数得到方程,两个函数的图象有交点,则,∴,∴,故答案为:.9.如图是二次函数的部分图象,由图象可知不等式的解集是______.【答案】##5>x>﹣1【详解】解:由图象可知二次函数的对称轴是直线x=2,与x轴一个交点坐标(5,0),由函数的对称性可得,与x轴另一个交点是(﹣1,0),∴ax2+bx+c>0的解集为﹣1<x<5,故答案为:﹣1<x<510.已知二次函数的图像与x轴的一个交点为,则关于x的一元二次方程的根为____________.【答案】,##,【详解】解:由题意可知,二次函数的对称轴是直线,则点(−1,0)关于的对称点是(3,0),所以一元二次方程的两个实数根是,.故答案为:,.三、解答题11.已知二次函数(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有公共点.(2)求证:不论m为何值,该二次函数的图像的顶点都在函数的图像上.【答案】(1)证明见详解;(2)证明见详解【解析】(1)令,则∵,,∴∵∴∴一元二次方程有实数根,故不论m取何值,函数与x轴总有公共点;(2)∵∴该函数的顶点坐标为把代入得∴不论m为何值,该二次函数的顶点坐标都在函数上.12.已知抛物线解析式为(1)写出抛物线的开口方向及抛物线与轴的交点坐标.(2)求抛物线的顶点坐标.(3)抛物线与轴有交点坐标吗?若有,请你求出抛物线与轴的交点坐标;若没有,请你说明理由.【答案】(1)开口向上;(0,12);(2)(4,-4);(3)有交点,交点为(2,0)和(6,0)【解析】(1)由题,二次项系数为1,1>0,故二次函数图像开口向上;把带入,得,故抛物线与轴交点为(0,12).(2)由题,故抛物线顶点为(4,-4).(3)∵>0,∴抛物线与轴有两个不同的交点;将带入二次函数求解,得,,故抛物线与轴的交点坐标为(2,0)和(6,0).培优第二阶——拓展培优练一、单选题1.如图,顶点为的抛物线经过点,则下列结论中正确的是(        )A.B.若点都在抛物线上,则C.当时,y随x的增大而减小D.关于x的一元二次方程有两个不等的实数根【答案】C【详解】解:A、图像与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2-4ac>0,故A选项不符合题意; B、抛物线的对称轴为直线x=-3,因为-2离对称轴的距离等于-4离对称轴的距离,所以m=n,故B选项不符合题意; C、顶点为(-3,-6),则对称轴为直线x=-3,抛物线开口向上,则当x<-3时,y随x的增大而减小,故C选项符合题意; D、由抛物线开口向上及顶点为(-3,-6)可知,此函数的最小值为-6,则ax2+bx+c=-7(a≠0)没有实数根,故D选项不符合题意. 故选:C.2.已知抛物线(m是常数)与x轴仅有一个交点,且与y轴交于正半轴,则m的值为(       )A.-7或1 B.-1 C.-7 D.1【答案】C【详解】二次函数与x轴仅有一个交点,则,即,解得,又因为二次函数图象与y轴交于正半轴,则,将1和-7代入分别得到0和16,则应把m=1舍去,故m=-7,故选C.3.关于函数.下列说法正确的是(        )A.无论m取何值,函数图像总经过点和B.当时,函数图像与x轴总有2个交点C.若,则当时,y随x的增大而减小D.当时,函数有最小值【答案】D【详解】解:A.∵ 当x=1时,y=(mx+m﹣1)(x﹣1)=0,当x=﹣1时,y=(mx+m﹣1)(x﹣1)=2,∴图像过(1,0)和(﹣1,2),故选项错误,不符合题意;B.∵当m=0时,y=(mx+m﹣1)(x﹣1)=1﹣x,∴该函数与x轴只有一个交点,故选项错误,不符合题意;C.∵ 当m>时,函数为开口向上的抛物线,则y=(mx+m﹣1)(x﹣1)=m(x+)(x﹣1),∴该函数的对称轴为直线x=(1+)=<1,∴当x<1时,y随x的增大而可能减小也可能增大,故选项错误,不符合题意;D.∵若m>0时,二次函数在顶点处取得最小值,∴当x=时,y=(mx+m﹣1)(x﹣1)=﹣m+1,故选项正确,符合题意.故选:D.4.二次函的图象的一部分如图所示.已知图象经过点,其对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c<0;③若抛物线经过点,则关于x的一元二次方程的两根分别为-3,5;④3a+c=0.上述结论中正确结论的个数为(       )A.1个 B.2个 C.3个 D.4个【答案】B【详解】解:∵抛物线开口向下,与y轴交于正半轴,∴,,∵对称轴为直线,∴,∴,∴,∴①错误;∵抛物线经过点,对称轴为,∴抛物线经过点;∴当时,,∴4a+2b+c>0,∴②错误;∵抛物线过,∴点关于对称轴为对称的点也在抛物线上,∴关于x的一元二次方程的两根分别为-3,5,∴③正确;∵抛物线过点,∴,∴,∴,∴④正确;故选:B.5.已知抛物线经过点,,则关于的一元二次方程的解为(        )A.或 B.或C.或 D.或【答案】A【详解】∵抛物线y=ax2+bx+c经过点(-1,0),(3,0),∴a-b+c=0,,∴b=-2a,c=-3a,∵a(x+1)2-cx=a+2b,∴a(x+1)2+3ax=-3a,∴a(x+1)2+3a(x+1)=0,∴a(x+1)(x+1+3)=0,解得x=-1或x=-4.故选:A.6.下列二次函数的图象与x轴没有交点的是(        )A. B. C. D.【答案】C【详解】解:A、,所以与x轴交于两点;B、,所以与x轴交于两点;C、,所以图象与x轴没有交点;D、,所以图象与x轴交于一点,故选:C.二、填空题7.已知二次函数y=ax2﹣4x+1的图象与x轴有两个交点,则a的取值范围是_____.【答案】a<4且a≠0##a≠0且a<4【详解】解:∵二次函数y=ax2﹣4x+1的图象与x轴有两个交点,∴令y=0时,ax2﹣4x+1=0根的判别式大于零;即,解得:a<4,∵a≠0,故答案为:a<4且a≠0.8.如图,若抛物线y=ax2+h与直线y=kx+b交于A(3,m),B(﹣2,n)两点,则不等式ax2+h<kx+b的解集是_____.【答案】﹣2<x<3##3>x>-2【详解】观察图象可知当x=3,x=-2时,.在交点之间时,一次函数的图象在抛物线上方,即,所以不等式的解集是-2<x<3.故答案为:-2<x<3.9.已知抛物线与轴的一个交点为,则代数式的值为________.【答案】【详解】解:把点代入抛物线的解析式,得,,故答案为:.10.已知二次函数的图象与轴的一个交点坐标是,则它与轴的另一个交点坐标是______.【答案】【详解】解:将代入中,得,,解得,即,令,则,解得,,,∵图象与轴的一个交点坐标是,∴它与轴的另一个交点坐标是,故答案为:.三、解答题11.在平面直角坐标系中,设二次函数(a,b是常数,).(1)若,当时,.求y的函数表达式.(2)写出一题a,b的值,使函数的图象与x轴只有一个公共点,并求此函数的顶点坐标.(3)已知,二次函数的图象和直线都经过点(2,m),求证.【答案】(1)y=x2−x+2;(2)(−1,0);(3)见解析【解析】(1)解:把a=1代入得,y=x2+bx+2,∵当x=−1时,y=4,∴4=1−b+2,∴b=−1,∴二次函数的关系式为y=x2−x+2;(2)解:令y=0,则ax2+bx+2=0,当Δ=0时,则b2−8a=0,∴b2=8a,∴若a=2,b=4时,函数y=ax2+bx+2的图象与x轴只有一个公共点,∴此时函数为y=2x2+4x+2=2(x+1)2,∴此函数的顶点坐标为(−1,0);(3)证明:∵二次函数y=ax2+bx+2的图象和直线y=ax+4b都经过点(2,m),∴4a+2b+2=2a+4b,∴2a+2=2b,∴b=a+1,∴a2+b2=a2+(a+1)2=2a2+2a+1=2(a+)2+,∴a2+b2≥.12.已知直线的解析式为和点.(1)求证:无论为何值,直线必定经过一点,并求该点的坐标;(2)设直线必定经过的点为.①若直线经过点A,且点A所在的函数图象经过与点关于原点对称的点,求的取值范围;②当时,设轴时, A点位置为,A,,三点共线时, A点位置为,求面积的最小值.【答案】(1)证明见解析,定点坐标;(2)①或 ②【解析】(1)解: 解得: 此时 所以直线过定点(2)解:①由(1)得: ,所以A在的图象上, 点A所在的函数图象经过与点关于原点对称的点,过 所以点A所在的函数为 整理得: 结合题意可得:有实数根, 令 解得: 结合二次函数的性质可得:时,或 ②由A在的图象上,当轴时,则()如图, 所以直线为 解得: 则 培优第三阶——中考沙场点兵一、单选题1.(2022·湖北恩施·中考真题)已知抛物线,当时,;当时,.下列判断:①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.其中正确的有(        )个.A.1 B.2 C.3 D.4【答案】C【详解】解:∵a=>0,开口向上,且当时,;当时,,∴抛物线与x轴有两个不同的交点,∴,∴;故①正确;∵当时,,∴-b+c<0,即b>+c,∵c>1,∴b>,故②正确;抛物线的对称轴为直线x=b,且开口向上,当x1时,b>,∴则x1+x2>3,但当c<1时,则b未必大于,则x1+x2>3的结论不成立,故④不正确;综上,正确的有①②③,共3个,故选:C.2.(2022·四川达州·中考真题)二次函数的部分图象如图所示,与y轴交于,对称轴为直线.以下结论:①;②;③对于任意实数m,都有成立;④若,,在该函数图象上,则;⑤方程(,k为常数)的所有根的和为4.其中正确结论有(       )A.2 B.3 C.4 D.5【答案】A【详解】二次函数的部分图象与y轴交于,对称轴为直线,抛物线开头向上,,,,故①正确;令,解得,由图得,,解得,故②正确;,可化为,即,,若成立,则,故③错误;当时,随的增大而减小,,,对称轴为直线,时与时所对应的值相等,,故④错误;(,k为常数)的解,是抛物线与直线y=±k的交点的横坐标,则(,k为常数)解的个数可能有2个,3个或4个,根据抛物线的对称性可知,当有3个或4个交点时,(,k为常数)的所有解的和是4,当有2个交点时,即k=0时,(,k为常数)的所有解的和是2,故⑤错误;综上,正确的个数为2,故选:A.3.(2022·山东威海·中考真题)如图,二次函数y=ax2+bx(a≠0)的图像过点(2,0),下列结论错误的是(     )A.b>0B.a+b>0C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在二次函数的图像上,当x1>x2>2时,y2<y1<0【答案】D【详解】解:根据图像知,当时,,故B选项结论正确,不符合题意,,,故A选项结论正确,不符合题意;由题可知二次函数对称轴为,,,故B选项结论正确,不符合题意;根据图像可知是关于的方程的一个根,故选项结论正确,不符合题意,若点,在二次函数的图像上,当时,,故D选项结论不正确,符合题意,故选:D.4.(2022·四川雅安·中考真题)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为(  )①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.A.②③④ B.①②④ C.①③ D.①②③④【答案】B【详解】解: y=(x﹣2)2﹣9,图象的开口向上,∴当x=2时,y取得最小值﹣9;故①符合题意; y=(x﹣2)2﹣9的对称轴为,而 故②符合题意;将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,故③不符合题意;当时,则 解得: 而 故④符合题意;故选B5.(2022·四川凉山·中考真题)已知抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3),且对称轴在y轴的左侧,则下列结论错误的是(        )A.a>0B.a+b=3C.抛物线经过点(-1,0)D.关于x的一元二次方程ax2+bx+c=-1有两个不相等的实数根【答案】C【详解】解:A、根据抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3),且对称轴在y轴的左侧可知,该说法正确,故该选项不符合题意;B、由抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3)可知,解得,该说法正确,故该选项不符合题意;C、由抛物线y=ax2+bx+c(a0)经过点(1,0),对称轴在y轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D、关于x的一元二次方程ax2+bx+c=-1根的情况,可以转化为抛物线y=ax2+bx+c(a≤0)与直线的交点情况,根据抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3),,结合抛物线开口向上,且对称轴在y轴的左侧可知抛物线y=ax2+bx+c(a≤0)与直线的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C.6.(2022·山东泰安·中考真题)一元二次方程根的情况是(        )A.有一个正根,一个负根 B.有两个正根,且有一根大于9小于12C.有两个正根,且都小于12 D.有两个正根,且有一根大于12【答案】D【详解】解:如图,由题意二次函数y=,与y交与点(0,12)与x轴交于(-4,0)(12,0),一次函数y=,与y交与点(0,15)与x轴交于(9,0)因此,两函数图象交点一个在第一象限,一个在第四象限,所以两根都大于0,且有一根大于12故选:D.二、填空题7.(2022·黑龙江大庆·中考真题)已知函数的图象与坐标轴恰有两个公共点,则实数m的值为____________.【答案】1或【详解】当函数图象过原点时,函数的图象与坐标轴恰有两个公共点,此时满足,解得;当函数图象与x轴只有一个交点且与坐标轴y轴也有一个交点时,此时满足,解得或,当是,函数变为与y轴只有一个交点,不合题意;综上可得,或时,函数图象与坐标轴恰有两个公共点.故答案为:1或8.(2022·内蒙古赤峰·中考真题)如图,抛物线交轴于、两点,交轴于点,点是抛物线上的点,则点关于直线的对称点的坐标为_________.【答案】(0,1)【详解】∵抛物线交轴于、两点,交轴于点,∴当时,;当时,∴∴OA=OC=5∴∵是抛物线上的点∴,解得当时,与A重合;当时,;∴CD∥x轴,∴设点关于直线的对称点M,则∴M在y轴上,且△DCM是等腰直角三角形∴DC=CM=6∴M点坐标为(0,1)故答案为:(0,1).9.(2022·福建·中考真题)已知抛物线与x轴交于A,B两点,抛物线与x轴交于C,D两点,其中n>0,若AD=2BC,则n的值为______.【答案】8【详解】解: 把y=0代入得:,解得:,,把y=0代入得:,解得:,,∵,∴,∴,即,,令,则,解得:,,当时,,解得:,∵,∴不符合题意舍去;当时,,解得:,∵,∴符合题意;综上分析可知,n的值为8.10.(2021·贵州遵义·中考真题)抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过(0,0),(4,0)两点.则下列四个结论正确的有_________(填写序号).①4a+b=0; ②5a+3b+2c>0;③若该抛物线y=ax2+bx+c与直线y=﹣3有交点,则a的取值范围是a;④对于a的每一个确定值,如果一元二次方程ax2+bx+c﹣t=0(t为常数,t≤0)的根为整数,则t的值只有3个.【答案】①③④【详解】将(0,0),(4,0)代入抛物线表达式,得: ,解得: ,∴抛物线解析式为 .① ,则,故①正确,符合题意;② ,又a>0,∴ ,故②错误,不符合题意;③若该抛物线y=ax2+bx+c与直线y=﹣3有交点,则有,即一元二次方程有实数根,则 ,∵a>0,∴ ,解得: ,故③正确,符合题意;④如图,∵一元二次方程ax2+bx+c﹣t=0(t为常数,t≤0)的根为整数,一元二次方程可化为 ,即抛物线与直线 (t为常数,t≤0)的交点横坐标为整数,如图,则横坐标可为0,1,2,3,4,有3个t满足.故④正确,满足题意.故答案为:①③④三、解答题11.(2021·四川乐山·中考真题)已知关于的一元二次方程.(1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解.【答案】(1);(2),【详解】解:(1)由题知,∴.(2)由图知的一个根为1,∴,∴,即一元二次方程为,解得,,∴一元二次方程的解为,.12.(2022·北京·中考真题)在平面直角坐标系中,点在抛物线上,设抛物线的对称轴为(1)当时,求抛物线与y轴交点的坐标及的值;(2)点在抛物线上,若求的取值范围及的取值范围.【答案】(1)(0,2);2;(2)的取值范围为,的取值范围为【解析】(1)解:当时,,∴当x=0时,y=2,∴抛物线与y轴交点的坐标为(0,2);∵,∴点关于对称轴为对称,∴;(2)解:当x=0时,y=c,∴抛物线与y轴交点坐标为(0,c),∴抛物线与y轴交点关于对称轴的对称点坐标为(2t,c),∵,∴当时,y随x的增大而减小,当时,y随x的增大而增大,当点,点,(2t,c)均在对称轴的右侧时, ,∵1<3,∴2t>3,即(不合题意,舍去),当点在对称轴的左侧,点,(2t,c)均在对称轴的右侧时,点在对称轴的右侧,,此时点到对称轴的距离大于点到对称轴的距离,∴,解得:,∵1<3,∴2t>3,即,∴,∵,,对称轴为,∴, ∴,解得:,∴的取值范围为,的取值范围为.13.(2022·湖南永州·中考真题)已知关于的函数.(1)若,函数的图象经过点和点,求该函数的表达式和最小值;(2)若,,时,函数的图象与轴有交点,求的取值范围.(3)阅读下面材料:设,函数图象与轴有两个不同的交点,,若,两点均在原点左侧,探究系数,,应满足的条件,根据函数图像,思考以下三个方面:①因为函数的图象与轴有两个不同的交点,所以;②因为,两点在原点左侧,所以对应图象上的点在轴上方,即;③上述两个条件还不能确保,两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需.综上所述,系数,,应满足的条件可归纳为:请根据上面阅读材料,类比解决下面问题:若函数的图象在直线的右侧与轴有且只有一个交点,求的取值范围.【答案】(1)或,0;(2);(3)或【解析】(1)根据题意,得 解之,得,所以函数的表达式或,当时,的最小值是-8.(2)根据题意,得而函数的图象与轴有交点,所以所以.(3)函数的图象图1: 即,所以,的值不存在.图2: 即的值.图3: 即所以的值不存在图4:即 所以的值不存在.图5: 即 所以的值为图6:函数与轴的交点为所以的值为0成立.综上所述,的取值范围是或. -101234-7-5-151323
    相关试卷

    初中数学人教版九年级上册25.3 用频率估计概率同步测试题: 这是一份初中数学人教版九年级上册25.3 用频率估计概率同步测试题

    初中数学人教版九年级上册第二十五章 概率初步25.2 用列举法求概率复习练习题: 这是一份初中数学人教版九年级上册第二十五章 概率初步25.2 用列举法求概率复习练习题

    人教版九年级上册24.4 弧长及扇形的面积同步测试题: 这是一份人教版九年级上册24.4 弧长及扇形的面积同步测试题

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【培优分级练】人教版数学九年级上册 22.2《二次函数与一元二次方程》培优三阶练(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map