沪科版第15章 轴对称图形和等腰三角形综合与测试当堂达标检测题
展开
这是一份沪科版第15章 轴对称图形和等腰三角形综合与测试当堂达标检测题,共11页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
2022-2023年沪科版数学八年级上册第15章《轴对称图形和等腰三角形》单元检测卷一 、选择题(本大题共12小题,每小题3分,共36分)1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是( )A. B. C. D.2.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是( )A. B. C. D.3.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为( )A.50° B.70° C.75° D.80°4.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在直线、线段、角、两条平行直线组成的图形、两条相交直线组成的图形这些图形中,是轴对称图形的有( )A.5个 B.4个 C.3个 D.2个6.如图,△ABC与△A’B’C’关于直线MN对称,P为MN上任一点,下列错误的是( )A.△AA’P是等腰三角形B.MN垂直平分AA’,CC’C.△ABC与△A’B’C’面积相等D.直线AB、A’B的交点不一定在MN上7.一个等腰三角形的一边长是7cm,另一边长为5cm,那么这个等腰三角形的周长是( )A.12cm B.17cm C.19cm D.17cm或19cm8.如图,在△ABC中,AB=AC,∠ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于EF长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC为( )度.A.65 B.75 C.80 D.859.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的垂直平分线交于点O,连接OC,则∠AOC的度数为( )A.151° B.122° C.118° D.120°10.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是( )A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤611.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC长是( )A.3 B.4 C.5 D.612.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6 B. 3 C. 2 D. 1.5二 、填空题(本大题共6小题,每小题3分,共18分)13.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为 .14.如图,△ABC中,AB+AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD周长为 .15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC= 度,若△ADE的周长为19cm,则BC= cm.16.已知点D是△ABC的边AB上一点,且AD=BD=CD,则∠ACB= .17.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为 .18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为 . 三 、作图题(本大题共1小题,共8分)19.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置(不写作法,保留作图痕迹). 四 、解答题(本大题共6小题,共58分)20.下列图形是否是轴对称图形,画出轴对称图形的所有对称轴.思考:正三角形有 条对称轴;正四边形有 条对称轴;正五边形有 条对称轴;正六边形有 条对称轴;正n边形有 条对称轴.当n越来越大时,正多边形接近于什么图形?它有多少条对称轴? 21.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,连接EF,EF与AD相交于点G.求证:AD是EF的垂直平分线. 22.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数. 23.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F. (1)若∠ABE=60°,求∠CDA的度数. (2)若AE=2,BE=1,CD=4.求四边形AECD的面积. 24.如图,已知△ABC,∠CAE是△ABC的外角,在下列三项中:①AB=AC;②AD平分∠CAE;③AD∥BC.选择两项为题设,另一项为结论,组成一个真命题,并证明. 25. (1)问题发现:如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连结BE.填空:①∠AEB的度数为 ;②线段AD,BE之间的数量关系为 ;(2)拓展探究:如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连结BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
答案1.D.2.D.3.B.4.D.5.A6.D7.D8.B.9.B.10.B.11.B12.D.13.答案为:140°.14.答案为:8cm.15.答案为:115,19.16.答案为:90°.17.答案为:5.18.答案为:120°或75°或30°. 19.解:点O或点O′就是所求的点.20.解:正三角形有3条对称轴;正四边形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正n边形有n条对称轴.当n越来越大时,正多边形接近于圆形,它有无数条对称轴.故答案为:3,4,5,6,n.作图如下:21.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中AD=AD,DE=DF.∴Rt△AED≌Rt△AFD,∴AE=AF,∵DE=DF,A、D为不同的点,∴直线AD是EF的垂直平分线,∴AD垂直平分EF.22.解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.23.解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD, ∴AE=AF,在Rt△ABE和Rt△ADF中,AE=AF,AB=AD.∴Rt△ABE≌Rt△ADF,∴∠ADF=∠ABE=60°,∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF, ∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,∴BC=CE+BE=6,∴四边形AECD的面积=△ABC的面积+△ACD的面积=10.24.解:命题:如果①②,那么③.证明如下:∵AB=AC,∴∠ABC=∠ACB.∵AD平分∠CAE,∴∠DAE=∠CAD.又∠DAE+∠CAD=∠ABC+∠ACB,∴2∠CAD=2∠C,即∠CAD=∠C,∴AD∥BC.25.解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE,∠CEB=∠ADC=180°-∠CDE=120°,∴∠AEB=∠CEB-∠CED=60°;(2)∠AEB=90°,AE=BE+2CM,理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∵∠ACD+∠DCB=90°=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.
相关试卷
这是一份初中数学沪科版九年级上册第22章 相似形综合与测试同步测试题,共12页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份数学沪科版第11章 平面直角坐标系综合与测试练习题,共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份初中数学沪科版八年级上册第14章 全等三角形综合与测试课后复习题,共11页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。