湖北省黄冈市浠水县丁司当石头中学2022-2023学年九年级上学期11月期中数学试题(含答案)
展开石头中学2022-2023年九年级上册数学期中试题
姓名: 学号: 分数:
一、单选题(每题3分,共24分)
1.请判别下列哪个方程是一元二次方程( )
A. B. C. D.
2.一元二次方程的根是( )
A., B.,
C., D.,
3.若关于x的一元二次方程有实数根,则k的取值范围为( )
A. B. C. D.
4.已知a、b、c是△ABC三边的长,则方程的根的情况为( )
A.没有实数根 B.有两个相等的正实数根
C.有两个不相等的负实数根 D.有两个异号的实数根
5.关于二次函数,下列说法正确的是( )
A.图象的对称轴为直线 B.图象与轴的交点坐标为
C.图象与轴的交点坐标为和 D.的最小值为
6.将抛物线向右平移2个单位长度,再向上平移3个单位长度,所得的抛物线是( )
A. B.
C. D.
7.如图,抛物线与x轴交于点A、B,把抛物线在x轴及其上方的部分记作,将向左平移得到,与x轴交于点A、O,若直线与、共有3个不同的交点,则m的取值范围是( )
A. B. C. D.
8.如图,抛物线与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①;②;③当x>0时,y随x的增大而增大;④若一次函数的图象经过点A,则点E(k,b)在第四象限.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(每题3分,共24分)
9.一元二次方程的一个根是,则______,它的另一个根是______.
10.已知是一元二次方程的两个实数根,则的值是 _____.
11.一个小组有若干人,新年互送贺卡一张,共送贺卡72张,共有______人.
12.如图,有一块长为米,宽为米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为平方米,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?设人行通道的宽度为,列方程得:_______.
13.在平面直角坐标系中,若抛物线的顶点在轴上,则______.
14.抛物线与x轴交于A、B两点,点P为抛物线上一点,且,则P点坐标是_______.
15.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是,则汽车刹车后前进了 _____m停下来.
16.二次函数为常数,的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,有下列结论:;(m为任意实数).其中正确的是___________
三、解答题(共66分)
17.解方程:
(1); (2)
18.已知关于x的一元二次方有两个不相等的实数根.
(1)求m的取值范围;
(2)若方程的两个根都不为0,写出一个满足条件的m值,并求此时方程的根.
19.如图所示,在中,,cm,cm,点P从点C开始沿CA边向点A以4cm/s的速度运动,同时,另一点Q从点C开始以3cm/s的速度沿CB边向点B运动.
(1)几秒钟后,的长度是15cm?
(2)几秒钟后,的面积是面积的?
20.已知二次函数,
(1)求出函数的顶点坐标、对称轴以及描述该函数的增减性.
(2)求抛物线与x轴交点和y轴交点坐标.
(3)当时.求函数y的取值范围.
21.有长为30米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆(平行于)的矩形花圃,设花圃的一边为米,面积为平方米.
(1)如果要围成面积为63平方米的花圃,的长是多少?
(2)求与的函数关系式,写出自变量的取值范围,直接写出面积的最大值.
22.某批发商以2元/张的价格订购了一批具有纪念意义的书签进行销售.经调查发现,每个定价3元,每天可以卖出500件,而且定价每上涨0.1元,其销售量将减少10张.根据规定:纪念品售价不能超过批发价的2.5倍.
(1)当每张书签定价为3.5元时,商店每天能卖出___________件;
(2)如果商店要实现每天800元的销售利润,那该如何定价?
23.某企业设计了一款工艺品,每件的成本是50元,据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与降价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
24.如图,抛物线与轴交于,两点,与轴交于,直线经过点且与抛物线交于另一点.
(1)求抛物线的解析式;
(2)若是位于直线上方的抛物线上的一个动点,连接,,当的面积最大时求点的坐标.
25.如图,抛物线与x轴相交于点A、B,与y轴相交于点C,其中,.
(1)求该抛物线的函数表达式;
(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值;
(3)在(2)中△PBC面积取最大值的条件下,点M是抛物线的对称轴上一点,在抛物线上确定一点N,使得以A、P、M、N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
参考答案:
1.B
2.B
3.B
4.C
5.D
6.C
7.B
8.C
9.
10.3
11.9
12.
13.1
14.,,,
15.
16.③④⑤
17.(1),
(2),
18.(1)
(2),
19.(1)3秒后 PQ 的长为15cm
(2)5秒后△PCQ的面积是△ABC面积的
20.(1)顶点坐标为、对称轴为直线,当时,y随x的增大而增大;当时,y随x的增大而减小;当时,y有最大值,最大值为
(2)与x轴的交点坐标为和,与y轴的交点坐标为
(3)
21.(1)当AB的长为时,花圃的面积为;
(2)与的函数关系式为,自变量x的取值范围为,面积的最大值为.
22.(1)450
(2)定价为4元
23.(1)()
(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元
24.(1)
(2)
25.(1)
(2)3,
(3),,
湖北省黄冈市浠水县浠水县丁司当石头中学2022-2023学年七年级上学期期中数学试题: 这是一份湖北省黄冈市浠水县浠水县丁司当石头中学2022-2023学年七年级上学期期中数学试题,共4页。
湖北省黄冈市浠水县丁司当石头中学2022-2023学年八年级上学期11月期中数学试题(含答案): 这是一份湖北省黄冈市浠水县丁司当石头中学2022-2023学年八年级上学期11月期中数学试题(含答案),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
湖北省黄冈市浠水县丁司当石头中学2022-2023学年九年级上学期11月期中数学试题(含答案): 这是一份湖北省黄冈市浠水县丁司当石头中学2022-2023学年九年级上学期11月期中数学试题(含答案),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。