开学活动
搜索
    上传资料 赚现金

    四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析

    四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析第1页
    四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析第2页
    四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析

    展开

    这是一份四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是( ).
    A.36°B.54°C.72°D.30°
    2.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为( )
    A.B.
    C.D.
    3.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
    A.30°B.15°C.18°D.20°
    4.如图是某几何体的三视图,下列判断正确的是( )
    A.几何体是圆柱体,高为2B.几何体是圆锥体,高为2
    C.几何体是圆柱体,半径为2D.几何体是圆锥体,直径为2
    5.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )
    A.350B.351C.356D.358
    6.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
    A.60°B.120°C.60°或120°D.30°或120°
    7.下列图形中,是中心对称但不是轴对称图形的为( )
    A.B.
    C.D.
    8.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
    A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
    B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
    C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
    D.两个角互为邻补角
    9.实数a在数轴上的位置如图所示,则化简后为( )
    A.7B.﹣7C.2a﹣15D.无法确定
    10.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为( )
    A.5B.﹣1C.2D.﹣5
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.
    12.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.
    13.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为____.
    14.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为 .
    15.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.
    16.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
    17.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (1)AB的长等于____;
    (2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______
    三、解答题(共7小题,满分69分)
    18.(10分)为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
    求参与问卷调查的总人数.补全条形统计图.该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.
    19.(5分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
    (1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
    (2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
    ①用含a的代数式表示小王四月份生产乙种产品的件数;
    ②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
    20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
    扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
    21.(10分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.
    (1)求与之间的函数关系式,并注明的取值范围;
    (2)为何值时,取最大值?最大值是多少?
    22.(10分)请根据图中提供的信息,回答下列问题:
    (1)一个水瓶与一个水杯分别是多少元?
    (2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
    23.(12分)先化简再求值:,其中,.
    24.(14分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
    (1)求一次函数与反比例函数的解析式;
    (2)求△AOB的面积.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.
    【详解】
    解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.
    又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.
    故选A.
    【点睛】
    本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.
    2、D
    【解析】
    根据k>0,k<0,结合两个函数的图象及其性质分类讨论.
    【详解】
    分两种情况讨论:
    ①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;
    ②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.
    分析可得:它们在同一直角坐标系中的图象大致是D.
    故选D.
    【点睛】
    本题主要考查二次函数、反比例函数的图象特点.
    3、C
    【解析】
    ∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
    【详解】
    ∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
    ∴∠1=108°-90°=18°.故选C
    【点睛】
    本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
    4、A
    【解析】
    试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
    再根据左视图的高度得出圆柱体的高为2;
    故选A.
    考点:由三视图判断几何体.
    5、B
    【解析】
    根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
    【详解】
    解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
    设小昱所写的第n个数为101,
    根据题意得:101=1+(n-1)×2,
    整理得:2(n-1)=100,即n-1=50,
    解得:n=51,
    则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
    故选B.
    【点睛】
    此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
    6、C
    【解析】
    根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
    【详解】
    如图所示,
    ∵OD⊥AB,
    ∴D为AB的中点,即AD=BD=,
    在Rt△AOD中,OA=5,AD=,
    ∴sin∠AOD=,
    又∵∠AOD为锐角,
    ∴∠AOD=60°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    又∵圆内接四边形AEBC对角互补,
    ∴∠AEB=120°,
    则此弦所对的圆周角为60°或120°.
    故选C.
    【点睛】
    此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
    7、C
    【解析】
    试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.
    故选C.
    考点:中心对称图形;轴对称图形.
    8、C
    【解析】
    熟记反证法的步骤,然后进行判断即可.
    解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
    A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
    B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
    C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
    D、由于无法说明两角具体的大小关系,故D错误.
    故选C.
    9、C
    【解析】
    根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
    【详解】
    解:根据数轴上点的位置得:5<a<10,
    ∴a﹣4>0,a﹣11<0,
    则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
    故选:C.
    【点睛】
    此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
    10、B
    【解析】
    根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
    【详解】
    ∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
    ∴-2+m=−,
    解得,m=-1,
    故选B.
    二、填空题(共7小题,每小题3分,满分21分)
    11、250
    【解析】
    从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.
    【详解】
    该立体图形为圆柱,
    ∵圆柱的底面半径r=5,高h=10,
    ∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).
    答:立体图形的体积为250π立方单位.
    故答案为250π.
    【点睛】
    考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.
    12、35
    【解析】
    分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
    详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
    则本次捐款20元的有:80−(20+10+15)=35(人),
    故答案为:35.
    点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
    13、.
    【解析】
    解:连接CE,
    ∵根据图形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,
    ∴CE⊥AB,
    ∴sinA=,
    故答案为.
    考点:勾股定理;三角形的面积;锐角三角函数的定义.
    14、
    【解析】
    要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.
    【详解】
    解:连接OD,如图所示,
    由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,
    ∴BO=2OD=6,∠BOD=60°,
    ∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,
    ∵∠COE=90°,OC=3,
    ∴OE=OCtan60°=3×=3,
    ∴AE=OE﹣OA=3-2=,
    【点晴】
    切线的性质
    15、﹣4.
    【解析】
    作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
    【详解】
    解:作AN⊥x轴于N,如图所示:
    ∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
    ∴可设A(x,﹣x)(x<0),
    在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
    解得:x=﹣2,
    ∴A(﹣2,2),
    代入y=得:k=﹣2×2=﹣4;
    故答案为﹣4.
    【点睛】
    本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
    16、8
    【解析】
    根据题意作出图形即可得出答案,
    【详解】
    如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
    【点睛】
    此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
    17、; 答案见解析.
    【解析】
    (1)AB==.
    故答案为.
    (2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
    理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
    三、解答题(共7小题,满分69分)
    18、(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人.
    【解析】
    (1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;
    (2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;
    (3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.
    【详解】
    (1)(人.
    答:参与问卷调查的总人数为500人.
    (2)(人.
    补全条形统计图,如图所示.
    (3)(人.
    答:这些人中最喜欢微信支付方式的人数约为2800人.
    【点睛】
    本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.
    19、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
    【解析】
    (1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
    (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
    ②根据“小王四月份的工资不少于1500元”即可列出不等式.
    【详解】
    (1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:

    解这个方程组得:,
    答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
    (2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
    ∴一小时生产甲产品4件,生产乙产品3件,
    所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
    ②依题意:1.5a+2.8(600-)≥1500,
    1680﹣0.6a≥1500,
    解得:a≤1.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
    20、【解析】
    试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;
    (2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.
    试题解析:(1)20÷20%=100,
    九年级参赛作文篇数对应的圆心角=360°×=126°;
    100﹣20﹣35=45,
    补全条形统计图如图所示:
    (2)假设4篇荣获特等奖的作文分别为A、B、C、D,
    其中A代表七年级获奖的特等奖作文.
    画树状图法:
    共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,
    ∴P(七年级特等奖作文被选登在校刊上)= .
    考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.
    21、(1);(1)时,取最大值,为.
    【解析】
    (1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;
    (1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.
    【详解】
    解:(1)分别延长DE,FP,与BC的延长线相交于G,H,
    ∵AF=x,
    ∴CH=x-4,
    设AQ=z,PH=BQ=6-z,
    ∵PH∥EG,
    ∴,即,
    化简得z=,
    ∴y=•x=-x1+x (4≤x≤10);
    (1)y=-x1+x=-(x-)1+,
    当x=dm时,y取最大值,最大值是dm1.
    【点睛】
    本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.
    22、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
    【解析】
    (1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
    (2)计算出两商场得费用,比较即可得到结果.
    【详解】
    解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
    根据题意得:3x+4(48﹣x)=152,
    解得:x=40,
    则一个水瓶40元,一个水杯是8元;
    (2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
    乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
    则∵n>10,且n为整数,
    ∴160+6.4n﹣(120+8n)=40﹣1.6n
    讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
    ∴选择乙商场购买更合算.
    当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
    ∴选择甲商场购买更合算.
    【点睛】
    此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
    23、8
    【解析】
    原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x与y的值代入计算即可求出值.
    【详解】
    原式==,
    当,时,原式=
    【点睛】
    本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.
    24、(1)y=-,y=-2x-4(2)1
    【解析】
    (1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
    (2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
    【详解】
    (1)将A(﹣3,m+1)代入反比例函数y=得,
    =m+1,
    解得m=﹣6,
    m+1=﹣6+1=2,
    所以,点A的坐标为(﹣3,2),
    反比例函数解析式为y=﹣,
    将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
    解得n=1,
    所以,点B的坐标为(1,﹣6),
    将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

    解得,
    所以,一次函数解析式为y=﹣2x﹣4;
    (2)设AB与x轴相交于点C,
    令﹣2x﹣4=0解得x=﹣2,
    所以,点C的坐标为(﹣2,0),
    所以,OC=2,
    S△AOB=S△AOC+S△BOC,
    =×2×2+×2×6,
    =2+6,
    =1.
    考点:反比例函数与一次函数的交点问题.
    生产甲产品件数(件)
    生产乙产品件数(件)
    所用总时间(分钟)
    10
    10
    350
    30
    20
    850

    相关试卷

    重庆市江津区实验中学2021-2022学年中考数学仿真试卷含解析:

    这是一份重庆市江津区实验中学2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了如图,,则的度数为,4的平方根是等内容,欢迎下载使用。

    2021-2022学年浙江省嘉兴市秀洲区实验中学中考数学仿真试卷含解析:

    这是一份2021-2022学年浙江省嘉兴市秀洲区实验中学中考数学仿真试卷含解析,共20页。试卷主要包含了我市某一周的最高气温统计如下表,运用乘法公式计算等内容,欢迎下载使用。

    2021-2022学年四川省乐山市第七中学中考数学仿真试卷含解析:

    这是一份2021-2022学年四川省乐山市第七中学中考数学仿真试卷含解析,共17页。试卷主要包含了如果,那么,实数﹣5.22的绝对值是,下列运算中,正确的是,一个正比例函数的图象过点等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map