四川省乐山四中学2022年中考数学押题卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2)B.(3,1)C.(2,2)D.(4,2)
2.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是( )
A.a<0B.b2-4ac<0C.当-1
3.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30°B.15°C.10°D.20°
4.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )
A.0个B.1个C.2个D.3个
5.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )
A.B.C.D.
6.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于( )
A.2B.3C. 4D.6
7.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是
A.5B.6C.7D.8
8.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
这组数据的中位数和众数分别是( )
A.1.1,1.1;B.1.4,1.1;C.1.3,1.4;D.1.3,1.1.
9.在△ABC中,∠C=90°,sinA=,则tanB等于( )
A.B.
C.D.
10.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A.B.C.D.
11.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( )
A.2x%B.1+2x%C.(1+x%)x%D.(2+x%)x%
12.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为( )
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.
14.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.
15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.
16.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
S矩形EBMF=S△ABC-(______________+______________).
易知,S△ADC=S△ABC,______________=______________,______________=______________.
可得S矩形NFGD=S矩形EBMF.
17.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈, cs53°≈,tan53°≈).
18.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)当x取哪些整数值时,不等式与4﹣7x<﹣3都成立?
20.(6分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
21.(6分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
(1)求抛物线的表达式及点B的坐标;
(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
22.(8分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).
23.(8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)
24.(10分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.
25.(10分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.
26.(12分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求⊙O的半径.
27.(12分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,
∴=,
∵BG=6,
∴AD=BC=2,
∵AD∥BG,
∴△OAD∽△OBG,
∴=,
∴=,
解得:OA=1,∴OB=3,
∴C点坐标为:(3,2),
故选A.
2、D
【解析】
试题分析:根据二次函数的图象和性质进行判断即可.
解:∵抛物线开口向上,
∴
∴A选项错误,
∵抛物线与x轴有两个交点,
∴
∴B选项错误,
由图象可知,当-1
由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为
即-=1,
∴D选项正确,
故选D.
3、B
【解析】
分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.
详解:如图所示:
∵△ABC是等腰直角三角形,
∴∠BAC=90°,∠ACB=45°,
∴∠1+∠BAC=30°+90°=120°,
∵a∥b,
∴∠ACD=180°-120°=60°,
∴∠2=∠ACD-∠ACB=60°-45°=15°;
故选B.
点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.
4、B
【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
【详解】
①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.
【点睛】
本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
5、D
【解析】
根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
【详解】
解:∵ab<0,
∴分两种情况:
(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
故选D
【点睛】
本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
6、B
【解析】
作BD⊥x轴于D,CE⊥x轴于E,
∴BD∥CE,
∴,
∵OC是△OAB的中线,
∴,
设CE=x,则BD=2x,
∴C的横坐标为,B的横坐标为,
∴OD=,OE=,
∴DE=OE-OD=﹣=,
∴AE=DE=,
∴OA=OE+AE=,
∴S△OAB=OA•BD=×=1.
故选B.
点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.
7、B
【解析】
根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.
【详解】
解:∵半径OC垂直于弦AB,
∴AD=DB= AB=
在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,
解得,OA=4
∴OD=OC-CD=3,
∵AO=OE,AD=DB,
∴BE=2OD=6
故选B
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键
8、D
【解析】
分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:这组数据的中位数是;
这组数据的众数是1.1.
故选D.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
9、B
【解析】
法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴csB=,∵,∴sinB=,∵tanB==故选B
法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
10、A
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得:.
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
11、D
【解析】
设第一季度的原产值为a,则第二季度的产值为 ,第三季度的产值为 ,则则第三季度的产值比第一季度的产值增长了
故选D.
12、C
【解析】
过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.
【详解】
解:如图,过点A作AF⊥DE于F,
在矩形ABCD中,AB=CD,
∵AE平分∠BED,
∴AF=AB,
∵BC=2AB,
∴BC=2AF,
∴∠ADF=30°,
在△AFD与△DCE中
∵∠C=∠AFD=90°,
∠ADF=∠DEC,
AF=DC,,
∴△AFD≌△DCE(AAS),
∴△CDE的面积=△AFD的面积=
∵矩形ABCD的面积=AB•BC=2AB2,
∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,
∴△ABE的面积=,
∴,
故选:C.
【点睛】
本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.
【详解】
解:连接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
则在△DMG和△DNH中, ,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=.
则阴影部分的面积是:.
故答案为:.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
14、CD的中点
【解析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
【详解】
∵△ADE旋转后能与△BEC重合,
∴△ADE≌△BEC,
∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△DEC是等腰直角三角形,
∴D与E,E与C是对应顶点,
∵CD的中点到D,E,C三点的距离相等,
∴旋转中心是CD的中点,
故答案为:CD的中点.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
15、-1≤a≤
【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
【详解】
解:反比例函数经过点A和点C.
当反比例函数经过点A时,即=3,
解得:a=±(负根舍去);
当反比例函数经过点C时,即=3,
解得:a=1±(负根舍去),
则-1≤a≤.
故答案为: -1≤a≤.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
16、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
【解析】
根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
【详解】
S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
可得S矩形NFGD=S矩形EBMF.
故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
【点睛】
本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
17、1.1.
【解析】
过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.
【详解】
解:过点D作DO⊥AH于点O,如图:
由题意得CB∥DO,
∴△ABC∽△AOD,
∴=,
∵∠CAB=53°,tan53°=,
∴tan∠CAB==,
∵AB=1.74m,
∴CB=1.31m,
∵四边形DGHO为长方形,
∴DO=GH=3.05m,OH=DG,
∴=,
则AO=1.1875m,
∵BH=AB=1.75m,
∴AH=3.5m,
则OH=AH-AO≈1.1m,
∴DG≈1.1m.
故答案为1.1.
【点睛】
本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
18、12
【解析】
根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、2,1
【解析】
根据题意得出不等式组,解不等式组求得其解集即可.
【详解】
根据题意得,
解不等式①,得:x≤1,
解不等式②,得:x>1,
则不等式组的解集为1<x≤1,
∴x可取的整数值是2,1.
【点睛】
本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.
20、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【详解】
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当PB=PC时,OP=OB=3,
∴P3(0,-3);
③当BP=BC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
21、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
(2)y的取值范围是﹣3≤y<1.
(2)b的取值范围是﹣<b<.
【解析】
(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
【详解】
(1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
(2)y=-2x-2=-3.
∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
(2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
由函数图象可知;b的取值范围是:-2<b<.
【点睛】
本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
22、39米
【解析】
过点A作AE⊥CD,垂足为点E, 在Rt△ADE中,利用三角函数求出的长,在Rt△ACE中,求出的长即可得.
【详解】
解:过点A作AE⊥CD,垂足为点E,
由题意得,AE= BC=28,∠EAD=25°,∠EAC=43°,
在Rt△ADE中,∵,∴,
在Rt△ACE中,∵,∴,
∴(米),
答:建筑物CD的高度约为39米.
23、此车没有超过了该路段16m/s的限制速度.
【解析】
分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.
详解:由题意得:∠DCA=60°,∠DCB=45°,
在Rt△CDB中,tan∠DCB=,
解得:DB=200,
在Rt△CDA中,tan∠DCA=,
解得:DA=200,
∴AB=DA﹣DB=200﹣200≈146米,
轿车速度,
答:此车没有超过了该路段16m/s的限制速度.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.
24、DG∥BC,理由见解析
【解析】
由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.
【详解】
解:DG∥BC,理由如下:
∵CD⊥AB,EF⊥AB,
∴CD∥EF,
∴∠2=∠DCE,
∵∠1=∠2,
∴∠1=∠DCE,
∴DG∥BC.
【点睛】
本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.
25、证明见解析.
【解析】
连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
【详解】
证明:如图,连接,
∵,
∴,
∵,
∴,
∴,
∴,
∴
∵
∴,则,
∴,
∴,即,
在和中,
∵,
∴,
∴
∵是的切线,则,
∴,
∴,则,
∴是的切线.
【点睛】
本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
26、(1)证明见解析;(1)
【解析】
试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;
(1)求出△BEC∽△BCA,得出比例式,代入求出即可.
试题解析:(1)证明:连接OE、EC.
∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.
∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;
(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.
点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.
27、客房8间,房客63人
【解析】
设该店有间客房,以人数相等为等量关系列出方程即可.
【详解】
设该店有间客房,则
解得
答:该店有客房8间,房客63人.
【点睛】
本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.
节约用水量(单位:吨)
1
1.1
1.4
1
1.5
家庭数
4
6
5
3
1
2023年四川省乐山市中考数学真题 (含解析): 这是一份2023年四川省乐山市中考数学真题 (含解析),共29页。试卷主要包含了本部分共16个小题,共120分等内容,欢迎下载使用。
2023年四川省乐山市中考数学真题(含解析): 这是一份2023年四川省乐山市中考数学真题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
四川省乐山市市中学区重点名校2021-2022学年中考数学猜题卷含解析: 这是一份四川省乐山市市中学区重点名校2021-2022学年中考数学猜题卷含解析,共21页。