![四川省泸州天立国际学校2022年中考数学模试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13651667/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省泸州天立国际学校2022年中考数学模试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13651667/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省泸州天立国际学校2022年中考数学模试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13651667/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省泸州天立国际学校2022年中考数学模试卷含解析
展开
这是一份四川省泸州天立国际学校2022年中考数学模试卷含解析,共18页。试卷主要包含了下列计算正确的是,下列事件中,必然事件是等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )
A.点AB.点BC.A,B之间D.B,C之间
2.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
A.5B.7C.8D.10
3.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
4.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.
B.
C.
D.
5. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
A.B.C.D.
6.下列计算正确的是( )
A.3a2﹣6a2=﹣3
B.(﹣2a)•(﹣a)=2a2
C.10a10÷2a2=5a5
D.﹣(a3)2=a6
7.在,,,这四个数中,比小的数有( )个.
A.B.C.D.
8.下列事件中,必然事件是( )
A.若ab=0,则a=0
B.若|a|=4,则a=±4
C.一个多边形的内角和为1000°
D.若两直线被第三条直线所截,则同位角相等
9.下列计算正确的是( )
A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=0
10.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )
A.B.C.D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1= .
12.若a、b为实数,且b=+4,则a+b=_____.
13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .
14.不等式≥-1的正整数解为________________.
15.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.
16.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.
三、解答题(共8题,共72分)
17.(8分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
18.(8分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BP•QP.
19.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
20.(8分)解不等式组:并把解集在数轴上表示出来.
21.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
22.(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
(1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
23.(12分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
(2)先化简,再求值:()÷,其中x=﹣1.
24.如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°
(1)如图2,当△ABO是等边三角形时,求证:OE=AB;
(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;
(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,
①试探究α、β之间存在的数量关系?
②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.
【详解】
解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),
②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),
③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),
④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,
⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.
∴该停靠点的位置应设在点A;
故选A.
【点睛】
此题为数学知识的应用,考查知识点为两点之间线段最短.
2、A
【解析】
解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
3、B
【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
∴y随x的增大而减小,
∴在0≤x≤5范围内,
x=0时,函数值最大﹣2×0+3=3,
故选B.
【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
4、A
【解析】
先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.
5、C
【解析】
分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值0,b>0,再通过列表计算概率.
【详解】解:(1)因为1、-1、2三个数中由两个正数,
所以从中任意取一个球,标号为正数的概率是.
(2)因为直线y=kx+b经过一、二、三象限,
所以k>0,b>0,
又因为取情况:
共9种情况,符合条件的有4种,
所以直线y=kx+b经过一、二、三象限的概率是.
【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
22、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.
【解析】
(1)直接利用待定系数法求一次函数解析式即可;
(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;
(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.
【详解】
(1)设p=kx+b,
把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,
得:
解得:,
∴p=0.1x+3.8;
(2)设该品牌手机在去年第x个月的销售金额为w万元,
w=(﹣50x+2600)(0.1x+3.8)
=﹣5x2+70x+9880
=﹣5(x﹣7)2+10125,
当x=7时,w最大=10125,
答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;
(3)当x=12时,y=100,p=5,
1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;
1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;
∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,
解得:m1%=(舍去),m2%=,
∴m=1,
答:m的值为1.
【点睛】
此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.
23、(1) (2)
【解析】
(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:(1)原式=﹣+1+2=﹣+1+=﹣;
(2)原式=
=
=
=,
当x=﹣1时,原式==.
【点睛】
本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
24、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.
【解析】
(1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;
(2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;
(3)①根据等腰三角形的性质、三角形内角和定理计算;
②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.
【详解】
(1)作OH⊥AB于H,
∵AD、BC的垂直平分线相交于点O,
∴OD=OA,OB=OC,
∵△ABO是等边三角形,
∴OD=OC,∠AOB=60°,
∵∠AOB+∠COD=180°
∴∠COD=120°,
∵OE是边CD的中线,
∴OE⊥CD,
∴∠OCE=30°,
∵OA=OB,OH⊥AB,
∴∠BOH=30°,BH=AB,
在△OCE和△BOH中,
,
∴△OCE≌△OBH,
∴OE=BH,
∴OE=AB;
(2)∵∠AOB=90°,∠AOB+∠COD=180°,
∴∠COD=90°,
在△OCD和△OBA中,
,
∴△OCD≌△OBA,
∴AB=CD,
∵∠COD=90°,OE是边CD的中线,
∴OE=CD,
∴OE=AB;
(3)①∵∠OAD=α,OA=OD,
∴∠AOD=180°﹣2α,
同理,∠BOC=180°﹣2β,
∵∠AOB+∠COD=180°,
∴∠AOD+∠COB=180°,
∴180°﹣2α+180°﹣2β=180°,
整理得,α+β=90°;
②延长OE至F,使EF=OE,连接FD、FC,
则四边形FDOC是平行四边形,
∴∠OCF+∠COD=180°,,
∴∠AOB=∠FCO,
在△FCO和△AOB中,
,
∴△FCO≌△AOB,
∴FO=AB,
∴OE=FO=AB.
【点睛】
本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
LED灯泡
普通白炽灯泡
进价(元)
45
25
标价(元)
60
30
月份(x)
1月
2月
3月
4月
5月
6月
销售量(p)
3.9万台
4.0万台
4.1万台
4.2万台
4.3万台
4.4万台
k b
1
-1
2
1
1,1
1,-1
1,2
-1
-1,1
-1,-1
-1.2
2
2,1
2,-1
2,2
相关试卷
这是一份2024年四川省泸州七中佳德学校中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省泸州市天立学校中考数学二模试卷,共26页。试卷主要包含了选择题,本大题共3个小题,每题6分,本大题共2个小题,每题7分等内容,欢迎下载使用。
这是一份2023年内蒙古乌兰察布市集宁区天立学校中考数学调研试卷(含解析),共26页。试卷主要包含了0分, 下列等式成立的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)